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Conference in Honor of Éric Ghysels 2024 and the 2025 BSE Summer Forum workshop on Advances in Structural
Shocks Identification for helpful comments. Correspondence: Alain Guay, Department of Economics, ESG-UQAM
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1. Introduction

The Structural Vector Autoregressive (SVAR) model is one of the most important tools in applied

macroeconomics for estimating the effects of structural shocks. A prominent branch of the SVAR

literature relies on the standard assumption that structural shocks are orthogonal, using the infor-

mation contained in the unconditional covariances of the reduced-form innovations to identify the

structural parameters. However, this information alone is insufficient to fully identify all param-

eters. As a result, additional identifying assumptions are required, such as short-run restrictions

(Sims, 1980), long-run restrictions (Blanchard and Quah, 1989) or sign restrictions (Uhlig, 2005).

Recently, the statistical identification of SVAR parameters through independent non-Gaussian

shocks has been proposed by Lanne et al. (2017) and Gouriéroux et al. (2017). Under the assump-

tion that at most one structural shock is Gaussian, various estimation methods are available to

recover the structural shocks and their corresponding impulse response functions (IRFs). Paramet-

ric approaches include Maximum Likelihood (Lanne et al., 2017) and Pseudo Maximum Likelihood

(PML) (Gouriéroux et al., 2017; Fiorentini and Sentana, 2023), utilizing a discrete scale mixture

of normals in symmetric cases or an unrestricted finite mixture in general. Semiparametric ap-

proaches include the method proposed by Lanne et al. (2023) and the Method of Moments (Guay,

2021; Keweloh, 2020; Lanne and Luoto, 2021). Importantly, this identification is purely statistical,

yet it can serve as a useful benchmark for evaluating and testing standard economic identification.1

A key point is that, in this literature, identification conditions derived from non-Gaussianity

hinge exclusively on the number of non-Gaussian structural shocks, rather than on the number

of non-Gaussian reduced-form innovations. This distinction underpins the estimation procedure

developed in this paper, which accommodates both full identification of structural shocks and

the identification of a subset thereof. We refer to the latter as partial identification.2 Partial

identification is particularly relevant when only certain series exhibit asymmetric dynamics over

the business cycle or time-varying volatility. Non-Gaussianity in reduced-form innovations may

also arise from only a subset of structural shocks. In such cases, the number of non-Gaussian

structural shocks can be smaller than the number of non-Gaussian reduced-form innovations. This

situation occurs, for example, when several reduced-form innovations share a common source of

1Since the procedure is statistical in nature, it is not intended to provide direct economic interpretations—for
instance, it does not imply whether monetary or fiscal policy shocks are more or less skewed than aggregate demand
or supply shocks.

2Partial identification is used here in the sense of Phillips (1989), where full identification is not assumed and only
a subset of parameters is identified (see also Gouriéroux and Jasiak (2023)). This differs from interpretations in which
identification is not an all-or-nothing property, and partially identified models can still yield valuable information
(see, e.g., Tamer (2010)).
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non-Gaussianity, such as exposure to structural business-cycle or volatility factors.3

Here, we develop a formal procedure that explicitly relies on the dimension of structural non-

Gaussianity for identification. To the best of our knowledge, this is the first approach to system-

atically exploit this dimension for both identification and estimation. Moreover, the distinction

between Gaussian and non-Gaussian shocks is not always clear-cut in finite samples. In such cases,

partial identification is especially useful because it allows researchers to focus on those shocks that

deviate most strongly from Gaussianity, thereby reducing the risk of weak identification.4

The proposed approach relies exclusively on unconditional moments, in particular on higher-

order cumulants, thereby avoiding the need for a fully specified model and enhancing robustness to

misspecification.5 Higher-order cumulants can be naturally represented as tensors. The multilinear

algebraic structure of tensors enables the identification of independent sources, analogous to the

Independent Component Analysis (ICA) problem. This identification can be achieved using mul-

tilinear generalizations of the singular value decomposition (SVD). Several tensor decompositions,

each with distinct properties, have been proposed as extensions of the SVD.

When only a subset of the structural shocks is identified, a low-rank approximation becomes

necessary. In the case of matrices, such an approximation can be readily obtained by truncating

the SVD or, equivalently, by performing the eigenvalue decomposition (EVD) of the quadratic form

that yields the principal components. However, extending this approach to higher-order cumulants

is not straightforward. Unlike the matrix case, the best low-rank tensor approximation cannot be

obtained sequentially; instead, all factors must be estimated simultaneously.

Consequently, a specific tensor decomposition, known as Tensor SVD, is introduced to iden-

tify structural shocks and their corresponding impulse response functions (IRFs). Tensor SVD

maximizes the diagonality of the tensor while ensuring that the vectors remain orthogonal. A

key property exploited by this method is that the higher-order cumulant of a stochastic vector

with mutually independent components forms a diagonal tensor, meaning that only the entries

with identical indices are nonzero. This property remains valid under the weaker conditions of no

coskewness and/or no cokurtosis.

Alternatively, a Higher-Order Singular Value Decomposition (HOSVD) can be applied for di-

mensionality reduction by retaining only the principal components, which are computed as the

3See Sentana and Fiorentini (2001) and Normandin and Phaneuf (2004) for volatility factor structures. Such
features are also consistent with macro risk episodes such as the Great Moderation or the COVID-19 recession
(Bekaert et al., 2025; Montiel Olea et al., 2022).

4Recent estimation alternatives for partial identification include the Generalized Covariance (GCov) estimator of
Gouriéroux and Jasiak (2023), a Bayesian method proposed by Anttonen et al. (2023), and a kernel-based estimator
by Hafner et al. (2025), though these approaches do not test the dimension of structural non-Gaussianity.

5See also Lewis (2021) for volatility-based identification without parametric assumptions.
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leading terms of the rank-truncated HOSVD. This approach can be interpreted as a form of Tensor

Principal Component Analysis (see Babii et al. (2024)). Another possible approach is the Moment

Component Analysis (MCA) introduced by Jondeau et al. (2018), which employs comoments of

order three and four along with an efficient technique known as Higher-Order Orthogonal Iteration

(HOOI) for computing low-rank tensor decomposition (see De Lathauwer et al. (2000b)). However,

neither the truncated HOSVD nor the HOOI-based decomposition ensures a diagonal tensor, which

is essential in our context for identifying structural shocks.

The proposed approach is implemented in two steps. The first step applies an orthogonal

transformation to the impact matrix of the structural shocks, reducing the problem to identifying

a single orthogonal matrix. In the second step, the orthogonal matrix is identified and estimated

using higher-order cumulants through a tensor singular value decomposition (Tensor SVD). Because

under our identification assumptions the higher-order cumulant tensors of the structural shocks are

diagonal, our estimator maximizes their diagonal elements.

The advantage of maximizing cumulants with identical indices is that it reduces the optimization

problem to only n cumulants, rather than minimizing O(nJ) cross-cumulants as required in a full-

identification setting such as the GMM framework for J = 3 or J = 4, where n denotes the number

of variables and J the order of the cumulant (see Comon, 1994). Moreover, partial identification

cannot be directly implemented within the GMM framework without imposing arbitrary restrictions

solely to satisfy the requirements of full model identification.

This paper also establishes the asymptotic distribution of the proposed estimator, which is based

on the Tensor SVD, as previously mentioned. To our knowledge, only a few studies have examined

the asymptotic properties of low-rank decompositions involving third- and fourth-order moments

or cumulants. Miettinen et al. (2015) derived the asymptotic properties of traditional estimation

procedures in Independent Component Analysis (ICA) that utilize fourth moments, such as fourth-

order blind identification, joint approximate diagonalization of eigenmatrices (JADE) and fastICA.

Furthermore, the asymptotic properties of JADE procedures have been analyzed in the context of

factor analysis based on third- and fourth-order cumulants by Bonhomme and Robin (2009).6

A simulation study shows that the proposed estimator delivers highly competitive small-sample

performance compared to alternative methods under complete identification. In particular, max-

imizing non-Gaussianity yields clear gains relative to minimizing cross-cumulants in the GMM

framework. Under partial identification, the proposed estimator also demonstrates robust small-

sample properties.

6Mesters and Zwiernik (2023) derived the asymptotic properties of GMM estimation using moment or cumulant
tensors for non-independent component analysis, but within a fully identified context.

3



Finally, we illustrate our estimation procedure with two applications. First, we examine the

effects of fiscal policies on economic activity by analyzing a trivariate SVAR process that includes

taxes, public spending, and output for the U.S. Rank tests developed by Guay (2021) indicate

that all structural shocks are symmetric, while one is non-mesokurtic. Based on these findings,

the identification condition and estimation results confirm that the subsystem linking all variables

to the tax shock is identified. This identification allows us to compare our proposed Tensor SVD

estimator with GMM estimators, which, however, require identification of the entire system.

In the second application, we investigate the effects of credit shocks in a four-variable VAR based

on Boivin et al. (2020). Rank tests reveal the presence of two structural shocks that deviate clearly

from Gaussianity, displaying both asymmetry and excess kurtosis. Exploiting the information

embedded in these higher-order moments yields impulse responses that correspond more closely to

theoretical DSGE models with financial frictions.

This paper is organized as follows. Section 2 presents the SVAR specification and outlines

the sufficient conditions for local statistical identification using higher-order cumulants. Section 3

provides a general introduction to tensors and tensor decompositions. Section 4 details the proposed

approach based on Tensor SVD and includes the asymptotic distribution results. Section 5 presents

the results of simulation experiments, and the final section discusses two empirical applications.

2. SVAR and Cumulants

This section presents the SVAR specification and the sufficient conditions for local statistical iden-

tification using higher-order cumulants.

2.1 Specification

We consider a structural system represented by the following p-order SVAR process:

Φxt = Φ0 +

p∑
τ=1

Φτxt−τ + ϵt, (1)

where xt is an (n×1) vector of endogenous variables, and ϵt is an (n×1) vector of structural shocks.

The shocks are assumed to have zero mean and an identity variance–covariance matrix. The vector

Φ0 contains n unrestricted intercepts, while the non-singular matrix Φ captures the n2 unrestricted

contemporaneous relations among the variables.7 Finally, each (n × n) matrix Φτ encodes the n2

unrestricted dynamic feedback effects at lag τ .

7Non-singularity ensures that no redundant variables are included in the SVAR system.
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The reduced form associated with system (1) corresponds to the following p-order VAR process:

xt = Γ0 +

p∑
τ=1

Γτxt−τ + νt, (2)

where Γ0 = ΘΦ0, Γτ = ΘΦτ , and the non-singular matrix Θ = Φ−1 captures the impact responses

of the variables of interest to the various structural shocks, while νt represents the reduced-form

innovations. These innovations are related to the structural shocks as follows: νt = Θϵt.

Now we present the corresponding cumulants of the structural shocks and the reduced-form

innovations. Consider the n × 1 vector of structural shocks ϵt. The dth-order cumulant, denoted

Cd, is given by:

Cd
i1i2...id

(ϵ) = Cum(ϵi1,t, ϵi2,t, . . . , ϵid,t).

An important advantage of higher-order cumulants over higher-order moments is that, for a

Gaussian random variable, all cumulants of order d > 2 are zero. Furthermore, for independent

variables, all cross-cumulants are zero.8 This implies that only terms with identical indices are

nonzero for independent variables. The same property holds for sets of variables satisfying weaker

independence conditions, such as zero coskewness or zero cokurtosis, meaning that third- and

fourth-order cumulants vanish except for terms where all indices match. These cumulants are

theoretically diagonal, i.e., only entries where all indices are equal can be nonzero. Consequently,

for uncorrelated variables, the second-order cumulant is diagonal, and the same property extends

to higher-order cumulants under conditions of zero coskewness, zero cokurtosis, or independence.

The first four cumulants of the structural shocks from system (1) are given by the following

expressions:

Ci(ϵ) = Cum(ϵit) = E[ϵit],

C2
i,j(ϵ) = Cum(ϵit, ϵjt) = E[ϵitϵjt],

C3
i,j,k(ϵ) = Cum(ϵit, ϵjt, ϵkt) = E[ϵitϵjtϵkt], (3)

C4
i,j,k,l(ϵ) = Cum(ϵit, ϵjt, ϵkt, ϵlt)

= E[ϵitϵjtϵktϵlt]− E[ϵitϵjt]E[ϵktϵlt]

− E[ϵitϵkt]E[ϵjtϵlt]− E[ϵitϵlt]E[ϵjtϵkt]. (4)

Here, E denotes the unconditional expectation operator. The elements of the first-order cu-

mulant represent the unconditional means of each structural shock i. The second-order cumulant

corresponds to the variance-covariance matrix of the structural shocks, given by: E(ϵϵ′) = I, which

8See Appendix A for additional properties of cumulants.
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implies that C2
i,j(ϵ) = 0 for i ̸= j and C2

i,i(ϵ) = 1 for all i.

The n unconstrained skewnesses of the structural shocks may be nonzero, i.e., C3
i,j,k(ϵ) ̸= 0 for

i = j = k, while all cross-cumulants (coskewnesses) are assumed to be zero, i.e., C3
i,j,k(ϵ) = 0 for

i ̸= j, k. Similarly, the n unconstrained fourth-order cumulants may be nonzero, i.e., C4
i,j,k,l(ϵ) ̸= 0

for i = j = k = l, while cross-cumulants are assumed to be zero, meaning that the excess cokurtoses

satisfy C4
i,j,k,l(ϵ) = 0 for i ̸= j, k, l. For notational simplicity, the third-order cumulant is denoted

by C3 ∈ Rn×n×n, where each element (i, j, k) is given by equation (3). Similarly, the fourth-order

cumulant, denoted by and C4 ∈ Rn×n×n×n has each element (i, j, k, l) defined by equation (4).

These third- and fourth-order cumulants can also be expressed in matrix form, respectively:

C3
ϵ = E[ϵtϵ′t ⊗ ϵ′t], (5)

C4
ϵ = E[ϵtϵ′t ⊗ ϵ′t ⊗ ϵ′t]− E[ϵ̃tϵ̃′t ⊗ ϵ̃′t ⊗ ϵ̃′t], (6)

where ⊗ denotes the Kronecker product, and ϵ̃t represents hypothetical structural shocks following

a multivariate normal distribution.

The first four cumulants of the reduced-form innovations are defined similarly to those of the

structural shocks ϵt. By the multilinearity properties of cumulants, the second-, third-, and fourth-

order cumulants of the innovations are related to the cumulants of the structural shocks as follows:

C2
i,j(ν) =

n∑
m=1

ΘimΘjm,

C3
i,j,k(ν) =

n∑
m=1

ΘimΘjmΘkmCm,m,m(ϵ),

C4
i,j,k,l(ν) =

n∑
m=1

ΘimΘjmΘkmΘlmCm,m,m,m(ϵ),

where C3
m,m,m(ϵ) and C4

m,m,m,m(ϵ) represent the skewness and excess (positive or negative) kurtosis

of the structural shocks m.9 The objective is to recover the mixing matrix Θ using an estimator of

the cumulants C2
i,j(ν), C3

i,j,k(ν), and/or C4
i,j,k,l(ν).

In matrix form, this becomes:

C2
ν = E[νν ′] = Σν = ΘΘ′,

C3
ν = E[νtν ′t ⊗ ν ′t] = ΘC3

ϵ (Θ
′ ⊗Θ′),

C4
ν = ΘC4

ϵ (Θ
′ ⊗Θ′ ⊗Θ′).

9A statistical distribution with negative excess kurtosis is called a platykurtic distribution, while a distribution
with positive excess kurtosis is known as a leptokurtic distribution. A mesokurtic distribution has an excess kurtosis
of zero.
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As is well known, the symmetric matrix C2
ν = Σν contains n(n+1)

2 distinct elements. Further-

more, the matrices C3
ν and C4

ν include n(n+1)(n+2)
6 and n(n+1)(n+2)(n+3)

24 distinct elements, respec-

tively.

2.2 Identification Conditions with Non-gaussianity

As outlined by Gouriéroux et al. (2017) and Lanne et al. (2017), the structural shocks ϵt are

often assumed to be i.i.d., mutually independent random variables, with at most one Gaussian

component. In this paper, we relax the mutual independence assumption by requiring instead

that the shocks exhibit zero cross-sectional covariances, coskewnesses, and/or excess cokurtoses,

following Guay (2021) and Mesters and Zwiernik (2023), at the cost of assuming the existence of

higher-order moments. Under this framework, the complete identification assumptions based on

skewness and/or excess kurtosis are:

Assumption 1 Complete Identification: CI

(i) The structural shocks ϵt have finite moments up to the fourth order.

(ii) The third- and fourth-order cross-cumulants of the structural shocks ϵt are zero.

(iii) All but at most one of the structural shocks exhibit skewness and/or excess kurtosis (i.e., are

non-mesokurtic).

Under condition CI, the impact matrix is identifiable up to post-multiplication by DP, where D
is a diagonal matrix with diagonal entries equal to ±1, and P is a permutation matrix. Assumption

1(ii) can be relaxed by requiring that only a sufficient number of cross-cumulants vanish (see Lanne

and Luoto (2021) and Mesters and Zwiernik (2023)).10

In the case of partial identification (PI), Guay (2021) provides sufficient rank conditions for

the partial identification of the impact matrix Θ. These conditions ensure that the subsystem

linking reduced-form innovations to the subset of structural shocks that are asymmetric and/or non-

mesokurtic is statistically identified, up to sign changes and column permutations. Consequently,

the columns of Θ corresponding to structural shocks characterized by skewness and/or excess

kurtosis are locally identified.

10However, according to the following general definition of structural IRFs (Gouriéroux et al., 2020),

IRFij(h) = E
[
xi,t+h

∣∣ ϵj,t = 1, ϵk,t = 0 ∀k ̸= j, Ft−1

]
− E

[
xi,t+h

∣∣ ϵj,t = 0 ∀k, Ft−1

]
,

where Ft−1 denotes the information set available up to time t − 1, any nonzero cross-cumulant would imply joint
movements of shocks, thereby contradicting this definition.
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Assumption 2 Partial Identification: PI

(i) The third- and fourth-order cross-cumulants of the structural shocks ϵt are zero.

(ii) Let a subset of structural shocks of dimension r < n − 1 exhibit skewness and/or excess

kurtosis. Under the rank condition in Guay (2021, Corollary 1), the subsystem corresponding

to this subset is identified (up to sign and permutation).

In conclusion, the entire structural system is statistically identified up to changes in sign and

column permutations, provided that all but one of the structural shocks exhibit nonzero skew-

ness and/or excess kurtosis. Additionally, the subsystem relating all reduced-form innovations to

asymmetric and/or non-mesokurtic structural shocks is statistically identified, given the informa-

tion contained in the second-, third-, and/or fourth-order cumulants. Finally, we introduce the

following additional assumption:

Assumption 3 The third- and/or fourth-order cumulants of the structural shocks that exhibit

skewness and/or excess kurtosis are distinct.

This assumption is analogous to the condition for eigenvalue decomposition, where the eigen-

vectors are uniquely determined if and only if all eigenvalues are distinct. It also resembles the

condition in Gouriéroux et al. (2017), which requires distinct and asymmetric pseudo-distributions,

as well as true distributions.

3. Cumulants as Tensors

This section introduces higher-order tensors as natural generalizations of vectors and matrices

to multi-dimensional spaces. Many higher-order statistics—such as cumulants—can be expressed

compactly in tensor form, making tensor decompositions particularly well suited for their analysis.

Since these statistics form the basis of our identification strategy, tensor methods provide a direct

and efficient framework for developing the estimation procedure of structural shocks.

A tensor is a multidimensional array; more formally, an Nth-order tensor is an element of the

tensor product of N vector spaces.11 The order of a tensor refers to the number of dimensions (also

called modes or ways). An Nth-order tensor (or N -way tensor) is defined as

A = {ai1i2···iN } ∈ RI1×I2×···×IN or A ∈ CI1×I2×···×IN ,

11See Appendix B for a formal definition of tensors and related concepts.
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where ai1i2···iN are the individual entries. Vectors and matrices correspond to tensors of order one

and two, respectively, while tensors of order three or higher are referred to as higher-order tensors.

Throughout, we adopt the notation of Kolda and Bader (2009).

A tensor is said to be supersymmetric (or simply symmetric) if its entries remain invariant under

any permutation of their indices. Since the value of a cumulant does not depend on the order of the

variables involved, cumulants are therefore symmetric tensors, as defined in equations (3) and (4).

The unfolding process reorders the elements of an Nth-order tensor into a matrix, a procedure

also referred to as matricization. The mode-n unfolding of a tensor A ∈ RI1×I2×···×IN is denoted

by A(n) and arranges the mode-n fibers into the columns of the resulting matrix. For a symmetric

tensor A ∈ RI1×I2×···×IN , the mode-n unfoldings coincide, i.e., A(1) = A(2) = · · · = A(N) = A.

Hence, the matrix representations in (5) and (6) correspond to the mode-i unfolding of the respective

symmetric tensor for i = 1, . . . , I, with I = 3 or I = 4 for the third- and fourth-order cumulants,

respectively.

A tensor A ∈ RI1×I2×···×IN is said to be diagonal if ai1i2···iN ̸= 0 only when i1 = i2 = · · · =
iN . Under the identification conditions stated in Assumption 1(ii) or Assumption 2(i), the

third- and fourth-order cumulants of the structural shocks are diagonal tensors. This diagonality

property is a key feature exploited in the decomposition proposed below.

Our identification and estimation strategy for structural shocks relies on explicitly imposing

orthogonality constraints. Following Chen and Saad (2008)12, this can be achieved through the

tensor singular value decomposition, which provides an optimal low-rank orthogonal approximation

of a tensor. Formally, we now define the tensor SVD for an Nth-order symmetric tensor: A =

{ai1i2···iN } ∈ Rn×n×···×n.

Definition 1 (Tensor SVD for Symmetric Tensors) An N th-order symmetric tensor

A ∈ Rn×n×···×n admits a tensor singular value decomposition if it can be written as

A =

r∑
i=1

λi ui ◦ ui ◦ · · · ◦ ui, (7)

where λi ∈ R are singular values and ui ∈ Rn are singular vectors.

Let

U =
[
u1,u2, . . . ,ur

]
∈ Rn×r,

with the constraint that U′U = Ir, so that the columns of U are orthonormal. Then (7) is called

the symmetric tensor singular value decomposition (symmetric TSVD) of A.

12See also Comon (2002).
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Equivalently, in matrix form this can be expressed as

A = U diag(λi) (U⊙ · · · ⊙U)′, (8)

where ⊙ denotes the Khatri–Rao product of N − 1 terms and U = [u1,u2, . . . ,ur] .

In the matrix case, the decomposition reduces to the familiar singular value decomposition

(SVD). The tensor SVD generalizes this concept by representing a tensor as a sum of rank-one

components, each formed by the outer product of vectors ui, for i = 1, . . . , r. The smallest integer

r for which such a representation holds is called the rank of the tensor A. In this setting, the

associated core tensor S is diagonal, with entries si,i,...,i = λi for i = 1, . . . , r, and all off-diagonal

elements equal to zero.13 The next proposition establishes an explicit expression for each singular

value λi, linking it directly to the tensor A and its corresponding singular vector ui.

Proposition 2 Let A ∈ Rn×···×n be an N th–order symmetric tensor admitting the symmetric

TSVD (7). Then, for each i = 1, . . . , r,

λi = ⟨A, ui ◦ ui ◦ · · · ◦ ui⟩ = u′iA (ui ⊗ ui ⊗ · · · ⊗ ui),

where the last expression involves (N−1) copies of ui in the Kronecker product. Here, ⟨·, ·⟩ denotes
the Frobenius inner product, and A the mode-n unfolding of A.

The proof of the proposition is given in Appendix C. The diagonality property makes the

tensor SVD particularly well suited to our framework, since under the identification assumptions

the higher-order cumulants of structural shocks are diagonal tensors.

When the rank is smaller than the tensor dimension—as in the partial identification case—a best

rank-r approximation must be determined. For matrices, the truncated SVD delivers the optimal

low-rank approximation in the least-squares sense: according to the Schmidt–Eckart–Young theo-

rem, this is achieved by retaining the first r terms of the singular value decomposition. This result,

however, does not extend to higher-order tensors. In the tensor setting, the best rank-r approxi-

mation cannot be obtained sequentially, but requires estimating all factor matrices simultaneously

(see Kolda and Bader (2009)).

The tensor SVD decomposition parallels principal component analysis (PCA), which identifies

orthogonal directions that maximize variance, a second-order cumulant. When applied to higher-

order cumulants, the tensor SVD extracts orthogonal directions that maximize these higher-order

statistics, making PCA simply the special case where the focus is on variance.

13See Appendix B for formal definitions of rank-one tensors and core tensors.
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The tensor SVD decomposition is also closely related to the CANDECOMP/PARAFAC (CP)

decomposition introduced in Appendix B. A key distinction is that the CP decomposition does

not impose orthogonality constraints on the factor matrices U. Indeed, uniqueness of the CP

decomposition can be achieved under conditions that are far weaker than orthogonality among

singular vectors (see Kolda and Bader (2009) for details).14 In general, for tensors of order greater

than two, a representation based solely on orthogonal vectors cannot achieve full diagonalization.

The absence of exact diagonalization motivates the search for an alternative notion of diagonal

structure. This leads to the concept of maximal diagonality, which formalizes the idea of approx-

imating a tensor by a decomposition that maximizes the weight on its diagonal elements. The

concept is formalized in the following proposition.

Proposition 3 (Maximal Diagonality and Tensor Decomposition) Let A ∈ Rn×···×n be a

symmetric tensor of order N . Since higher-order tensors cannot, in general, be diagonalized by

unitary transformations, a solution is obtained by seeking the decomposition that minimizes the

Frobenius distance to A while enforcing orthogonality:

min
λ1,...,λr
u1,...,ur

∥∥∥∥∥A−
r∑

i=1

λi ui ◦ ui ◦ · · · ◦ ui

∥∥∥∥∥
2

F

subject to U′U = Ir, (9)

where U =
[
u1,u2, . . . ,ur

]
and ∥ · ∥F denotes the Frobenius norm.

This minimization problem is equivalent to

max
U′U=Ir

r∑
i=1

λ2
i ,

that is, maximizing the squared norm of the diagonal of the core tensor subject to orthogonality.

Hence, the solution provides the decomposition of A with maximal diagonality. The equivalence

between the minimization problem (9) and the maximal diagonality formulation is formally estab-

lished in Chen and Saad (2008). The solution to (9) maximizes the diagonal contribution of the

core tensor S.15 In our setting, this equivalence substantially reduces computational complexity:

from O(nJ) to n diagonal cumulants of order J under complete identification, and from O(rJ) to r

diagonal cumulants under partial identification, where r is the number of non-Gaussian structural

shocks. This reduction is particularly valuable in moderate- to high-dimensional systems, where

GMM estimators targeting cross-cumulants are computationally intensive.

14Uniqueness is defined up to scaling and permutation of the components.
15See Comon (1994) for a related argument in the context of Independent Component Analysis (ICA) and cumu-

lants.
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4. Tensor SVD for Non-Gaussian SVAR

In this section, we present a two-step strategy for identifying structural shocks in a non-Gaussian

VAR using the tensor SVD decomposition. The first step consists in prewhitening the data so that

the identification problem reduces to determining an orthogonal matrix. The second step then

focuses on estimating this orthogonal matrix.

4.1 A Two-Step Procedure: Prewhitening as the First Step

The first step consists of applying an orthogonal transformation to the impact matrix Θ:

νt = Θϵt = Θ̃Qϵt = Θ̃ut,

where ut = Qϵt, Q is an orthogonal matrix satisfying QQ′ = I, and Σν = Θ̃Θ̃′. The matrix Θ̃

provides a square-root decomposition of Σν , which ensures that the transformed shocks are uncor-

related with unit variance. Any valid square-root decomposition may be used for prewhitening;

common choices include the Cholesky and singular value decompositions.

Using only the covariance matrix, the orthogonal matrix Q remains unidentified. Its recovery

requires exploiting higher-order cumulants of the prewhitened shocks ut. By multilinearity of

cumulants, the third- and fourth-order cumulants of ut can be expressed in terms of those of the

structural shocks as

C3
i,j,k(u) =

n∑
m=1

qimqjmqkm C3
m,m,m(ϵ), C4

i,j,k,l(u) =
n∑

m=1

qimqjmqkmqlm C4
m,m,m,m(ϵ),

where qij are the entries of Q, while C3
m,m,m(ϵ) and C4

m,m,m,m(ϵ) denote the corresponding diagonal

cumulants of the structural shocks.

In compact matrix form:

C3
u = QC3

ϵ (Q⊗Q)′, C4
u = QC4

ϵ (Q⊗Q⊗Q)′,

which, using Q′Q = I, yield the inverses

C3
ϵ = Q′C3

u(Q⊗Q), C4
ϵ = Q′C4

u(Q⊗Q⊗Q).

4.2 A Two-Step Procedure: Estimation as a Second Step

The second step recovers the orthogonal matrix Q (or a subset of its columns) using the tensor

SVD decomposition introduced in Section 3.
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Consider the third-order cumulant tensor C3(u) and r = n. Building on Proposition 3, the

associated tensor SVD optimization problem is

min
λ1,...,λr
q1,...,qr

∥∥∥∥∥C3(u)−
r∑

i=1

λi qi ◦ qi ◦ qi

∥∥∥∥∥
2

F

subject to Q′Q = Ir,

where Q = [q1, . . . , qr].

Using vectorization, this problem can equivalently be written as

min
λ1,...,λr

Q′Q=Ir

∥∥vec(C3
u)− (Q⊗Q⊗Q) vec(C3

ϵ )
∥∥2
2
,

where λi, for i = 1, . . . , r, are the nonzero elements of C3
ϵ .

As shown in Proposition 3, this minimization problem is equivalent to the maximization

max
Q′Q=Ir

r∑
i=1

λ2
i = max

Q′Q=Ir

r∑
i=1

(
C3
i,i,i(ϵ)

)2
.

For the third-order cumulants, Proposition 2 implies that

q′iC
3
u (qi ⊗ qi) = λi, i = 1, . . . , r,

q′iC
3
u (qj ⊗ qk) = 0, for all i ̸= j, k.

In the case of partial identification, where r < n, the orthogonal matrix Q can be partitioned

as

Q =
[
Qr Qn−r

]
,

with Qr =
[
q1 · · · qr

]
containing the first r columns of Q. The estimation task reduces to

selecting the r orthogonal directions—linear combinations of the reduced-form innovations—that

maximize a chosen measure of non-Gaussianity, in this case, skewness. This procedure parallels

principal component analysis (PCA): whereas PCA identifies orthogonal directions that maximize

variance, here we identify orthogonal directions that maximize skewness.

Let Ĉ3
u,T denote a T 1/2-consistent and asymptotically normally distributed estimator of the

coskewness matrix C3
u, where the dependence on the first-stage VAR parameters is omitted for

simplicity. The estimator Q̂r,T is then defined as the maximizer of the Lagrangian

LT =

r∑
i=1

λ2
i,T −

r∑
j,k=1

µjk

(
q′jqk − δjk

)
, (10)

where λi,T = q′iĈ
3
u,T (qi⊗ qi), δjk is the Kronecker delta, and µjk are Lagrange multipliers enforcing
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orthogonality.

The following theorem establishes the asymptotic distribution of the estimator Q̂r obtained

from (10). An analogous result applies when estimation is based on the fourth-order cumulant

tensor, corresponding to the optimization problem

max
Q′

rQr=Ir

r∑
i=1

(
C4
i,i,i,i(ϵ)

)2
= max

Q′
rQr=Ir

r∑
i=1

λ2
i .

For simplicity of exposition, we consider the case where the entire system or a subsystem is

identified for the two distinct cases of skewness and non-mesokurticity.

Theorem 4 Suppose that Assumption CI holds in the case of complete identification, or Assump-

tion PI holds in the case of partial identification, as well as Assumption 3.

• In the case where the entire set or a subset of structural shocks of dimension r exhibits skew-

ness, and given the additional assumption that E(ϵ6t ) < ∞, let Ĉ3
u,T be a T 1/2-consistent and

asymptotically normally distributed estimator of the coskewness matrix C3
u. The asymptotic

distribution of vec(Q̂r,T ) is given by:

T 1/2
(
vec(Q̂r,T )− vec(Qr)

)
→ N

(
0, Avar

(
T 1/2Q̂r,T

))
, (11)

where

Avar
(
T 1/2Q̂r,T

)
= (Ir⊗Qr)Ξ ((Qr ⊙Qr)⊗Qr)

′Avar
(
Ĉ3

u,T

)
((Qr ⊙Qr)⊗Qr) Ξ

′(Ir⊗Qr)
′,

and Avar denotes the asymptotic variance, while → indicates weak convergence.

• In the case where the entire set or a subset of structural shocks of dimension r features non-

mesokurticity, let Ĉ4
u,T be a T 1/2-consistent and asymptotically normally distributed estimator

of the cokurtosis matrix C4
u. Given the additional assumption that E(ϵ8t ) < ∞, the asymptotic

distribution of vec(Q̂r,T ) is given by expression (11) and:

Avar
(
T 1/2Q̂r,T

)
= (Ir ⊗Qr)Ξ ((Qr ⊙Qr ⊙Qr)⊗Qr)

′Avar
(
Ĉ4

u,T

)
× ((Qr ⊙Qr ⊙Qr)⊗Qr) Ξ

′(Ir ⊗Qr)
′,

where Avar denotes the asymptotic variance.

The proof of the theorem is given in Appendix C.

In the case of complete identification (CI), r = n or r = n − 1 if only one structural shock is

Gaussian. For partial identification (PI), r < n − 1. As becomes clear from the derivation of the
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asymptotic distribution, the precision of the estimator Q̂r depends on the distance between each

λ̂i,T , similarly to the case of eigenvalues in an eigenvalue decomposition (EVD). It is also important

to note that the asymptotic distribution of Ĉ3
u,T and Ĉ4

u,T depends on the asymptotic estimator of

the reduced-form parameters associated with the first-stage VAR:

Γ =
(
vec(Φ0)

′, . . . , vec(Φp)
′, vech(Σν)

′)′ ,
where Σν = Θ̃Θ̃′.

The advantage of maximizing (10) is that it involves only the n diagonal cumulants, i.e. an

O(n) problem. By contrast, in the GMM framework one must account for all cross-cumulants

associated with these n cumulants, resulting in a computational burden of orderO(n3) orO(n4). For

completeness, Appendix D presents the corresponding GMM estimator with the optimal weighting

matrix. The relative performance of our estimator will be examined in the next section, where

simulation results indicate that it consistently outperforms the GMM approach.

In practice, several cases, or combinations thereof, are of interest. The first two cases involve

non-Gaussianity arising from skewness or from non-mesokurticity, as examined above. Suppose

there are r1 skewed and r2 non-mesokurtic structural shocks, with r1 + r2 = r. The corresponding

optimization problem is:

max
Q′

rQr=Ir

 r1∑
i=1

λ2
3,i +

r2∑
j=1

λ2
4,j

 ,

where λ3,i = C3
i,i,i(ϵ) and λ4,j = C4

j,j,j,j(ϵ), with i ̸= j. It is also possible to introduce weights on

third- and fourth-order cumulants, reflecting prior information or estimated precision.

Another relevant case arises when the r structural shocks exhibit both skewness and non-

mesokurticity. This situation is empirically plausible, as economic and financial shocks often display

multiple forms of non-Gaussianity rather than a single deviation from normality. In this scenario,

the maximization problem becomes:

max
Q′

rQr=Ir

r∑
i=1

(
λ2
3,i + λ2

4,i

)
= max

Q′
rQr=Ir

r∑
i=1

(
(C3

i,i,i(ϵ))
2 + (C4

i,i,i,i(ϵ))
2
)
.

Appendix C derives the asymptotic distributions for these cases.

In empirical applications, the relevant case of interest can be determined by performing the

bootstrap testing procedure proposed in Guay (2021) on the third- and fourth-order cumulants.

The details of the test are provided in Appendix E.
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4.3 Practical Implementation

The estimation considerations above suggest a practical sequence of steps for implementing TSVD.

The procedure can be summarized as follows:

1. Reduced-Form Estimation: Estimate the reduced-form VAR model in (2) using standard

techniques and retrieve the residuals ν̂t.

2. Diagnostic Testing: Apply the bootstrap rank tests of Guay (2021) to determine the num-

ber of structural shocks that exhibit non-Gaussianity (i.e., skewness and/or excess kurtosis).

3. Model Selection: Based on the test outcomes, select the appropriate optimization problem,

which may involve maximizing third-order cumulants, fourth-order cumulants, or a weighted

combination thereof. This step also determines whether the system is fully or only partially

identified.

4. Impact Matrix Estimation: Estimate the orthogonal matrix Q̂r by solving the TSVD

optimization problem (10). The structural impact matrix is then given by Θ̂ = Θ̄Q̂r, where

Θ̄ is obtained from the prewhitening step (e.g., Cholesky decomposition or singular value

decomposition).

5. Inference: Compute structural impulse response functions (IRFs) and construct confidence

intervals using a bootstrap procedure. The bootstrap replicates steps 1 and 4 conditional on

the model choice in step 3, thereby incorporating estimation uncertainty.

In the final step, we propose using a bootstrap procedure instead of relying on asymptotic

approximations for two reasons. First, in VAR settings, standard or corrected bootstrap methods

have been shown to deliver more accurate finite-sample approximations of uncertainty than their

asymptotic counterparts (Kilian, 1999). Second, when higher moments are involved—particularly

in the presence of excess kurtosis—bootstrap methods tend to be more reliable than asymptotic

approximations.16

Alternative methods have been proposed in the ICA literature to address this estimation

problem in specific cases. Deflation-based FastICA and Symmetric FastICA (Hyvärinen, 1999;

Hyvärinen et al., 2001) maximize fourth-order moments in the presence of excess kurtosis, but rely

on a different criterion. Jacobi rotation-based methods are also commonly employed in practice.

The objective is to render a symmetric tensor as diagonal as possible through successive Jacobi

16See Bonhomme and Robin (2009) and Keweloh (2020) for arguments in favor of bootstrap methods in this
context. Additional supporting evidence is provided by simulation experiments in testing settings, as shown in Kilian
and Demiroglu (2000) and Guay (2021).
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rotations (see, e.g., Comon (1994); Cardoso (1989); Li et al. (2018); Bonhomme and Robin (2009)).

Other approaches include Riemannian optimization techniques (see, e.g., Usevich et al. (2020)).

5. Simulation Results

This section presents the results of a Monte Carlo study designed to evaluate the finite-sample per-

formance of the proposed estimator. We compare its properties with those of alternative estimators

in scenarios where the system is either completely identified or partially identified.

5.1 Complete Identification Case

In the first set of experiments, a two-dimensional orthogonal matrix is specified, which depends on

a single parameter, as described in Gouriéroux et al. (2017). The vector ut is a function of the

structural shocks via an orthogonal matrix, such that

ut = Qϵt,

where the orthogonal matrix is given by

Q =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
,

with θ = −π/5. Since the matrix Q depends on one parameter, as in Gouriéroux et al. (2017), our

analysis primarily focuses on the estimation of q11 = cos(θ) = 0.809.

We investigate different sample sizes T , specifically T = 200, 500, and 5000, with 10,000 sim-

ulated samples. To assess the robustness of the estimators, we consider different distributional

setups, following those used in Gouriéroux et al. (2017). In case (1), both structural shocks are

independently generated from Student’s t-distributions with five degrees of freedom. In case (2),

the first structural shock is drawn from a Student’s t-distribution with seven degrees of freedom,

while the second is drawn from a Student’s t-distribution with twelve degrees of freedom. In case

(3), the first structural shock is generated from a Student’s t-distribution with twelve degrees of

freedom, and the second from a hyperbolic secant distribution.

In the second set of experiments, we investigate the performance of alternative estimators in

the presence of skewness. In the first case, which exhibits weaker skewness, 1.6808× ϵ1,t ∼ N(1, 1)

with probability 0.5 and 1.6808× ϵ1,t ∼ N(−1, 2.65) with probability 0.5, resulting in ϵ1,t having a

skewness of −0.5231. The second structural shock is generated as ϵ2,t ∼ N(0, 1). In second case,

which features stronger skewness, 2.1755×ϵ1,t ∼ N(1, 1) with probability 0.7887 and 2.1755×ϵ1,t ∼
N(−3.7326, 1) with probability 0.2113, resulting in ϵ1,t having a skewness of −0.9907. The second
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structural shock is again generated as ϵ2,t ∼ N(0, 1), as in the preceding case.

For each experiment, we apply different approaches to estimate the orthogonal matrix. In cases

of complete identification with excess kurtosis, we consider the pseudo maximum likelihood (PML)

estimator proposed by Gouriéroux et al. (2017), the higher-order singular value decomposition

(HOSVD),17 the alternating least squares (ALS) estimator, the FastICA estimator of Hyvärinen

(1999), and the joint approximate diagonalization of eigenmatrices (JADE) (Cardoso, 1989).18 We

include the ALS estimator in our comparison even though it does not enforce linear independence

among the structural shocks. Finally, we compare these results with the GMM estimator described

in Appendix D, using both the identity matrix and an optimal data-driven weighting matrix in

the second step.19 This comparison allows us to evaluate the performance of maximizing non-

Gaussianity, as done in the TSVD estimator, relative to minimizing cokurtosis and/or coskewness,

as in the GMM framework.

In the case of skewness, we also consider the PML estimator with a likelihood specified under

excess kurtosis in order to evaluate the robustness of inference under a misspecified likelihood. As

in the first set of experiments, we compare the HOSVD, ALS, FastICA and GMM estimators, along

with the tensor SVD (TSVD) estimator proposed in this paper. The JADE estimator is excluded

from this comparison because it is specifically designed to capture excess kurtosis. For HOSVD,

FastICA, TSVD, and GMM, the identification criteria are based on third-order cumulants.

Table 1 presents the bias and root mean squared errors (RMSE) associated with the different

estimators of q11 = cos(θ) = 0.809. As a first validation step, our implementation of the PML

estimators exactly reproduces the results reported in Gouriéroux et al. (2017). In nearly all ex-

periments, the TSVD estimator outperforms the other estimators, including in scenarios where the

likelihood function is correctly specified for the PML estimator with T = 200. However, as ex-

pected, in well-specified settings with larger samples (T = 500 and T = 5000), the PML estimator

slightly outperforms TSVD, reflecting its status as the asymptotically efficient maximum likelihood

estimator. In some experiments, the TSVD estimator achieves substantial efficiency gains, reducing

the RMSE by up to 50% relative to competing estimators.

17See Appendix B for a full description of HOSVD.
18The JADE algorithm (Cardoso, 1989) is a cumulant-based method that diagonalizes a set of fourth-order cu-

mulant matrices using Jacobi rotations. We implemented JADE using the JadeR.m MATLAB file provided by Jean-
François Cardoso (2013). For the FastICA toolbox, we used MATLAB codes developed by H. Gävert, J. Hurri, J.
Särelä, and A. Hyvärinen, version 2.5 (2005). The ALS estimator is implemented using the Tensor Toolbox by Sandia
National Labs, Version 3.1. The ALS estimator does not generally guarantee orthogonal vectors, but is nevertheless
included for comparison.

19We also considered the GMM estimator proposed by Lanne and Luoto (2021), but its small-sample performance
was consistently inferior—in terms of both bias and root mean squared error—compared to the GMM estimator
presented in Appendix D.
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The FastICA and JADE estimators generally perform worse than TSVD, but outperform

HOSVD and ALS in most configurations—specifically in cases (1) and (2)—except when the sample

size increases to T = 5000, where their relative performance deteriorates. Regarding the GMM

estimators, the version using the identity weighting matrix (GMM-I) outperforms the two-step es-

timator in small samples, particularly in case (1) with T = 200. The optimally weighted GMM

estimator (GMM-opt) yields improvements over GMM-I in terms of both bias and RMSE when the

sample size increases to T = 500 and T = 5000. However, it remains outperformed by the TSVD

estimator with respect to RMSE in all configurations for T = 200 and T = 500.

Table 2 presents the bias and RMSE associated with the different estimators of q11 = cos(θ) =

0.809 in the presence of skewness. For the HOSVD, TSVD, ALS, and FastICA estimators, the

ranking remains consistent with the first set of experiments, with the TSVD estimator outperform-

ing the others. Its superior performance is especially evident in scenarios with weaker skewness and

smaller sample sizes (T = 200 and T = 500). Although performance differences tend to diminish

in cases of strong skewness, the TSVD estimator still maintains a clear advantage.

As expected, the performance of the PML estimator deteriorates in this setting, due to its

reliance on a likelihood function based on the Student’s t-distribution. Consistent with results from

the excess kurtosis experiments, the first-step GMM estimator (GMM-I) performs better than the

two-step version in small samples. However, its relative performance declines when the sample size

increases to T = 500 and T = 5000, at which point the two-step GMM performs comparatively

better. Nonetheless, both GMM estimators are clearly dominated by the TSVD estimator in all

scenarios, except in large samples where their performance becomes similar.

5.1.1 Impact of Dimensionality on TSVD vs. GMM

In this set of experiments, we examine how the small-sample performance of the TSVD and GMM

estimators is affected by the number of terms optimized or moment conditions employed. Specifi-

cally, we consider a trivariate system in which the orthogonal mixing matrix Q is parameterized as

the product of three elementary rotations:

Q(θ) = Q1(θ)×Q2(θ)×Q3(θ),

where

Q1(θ) =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 , Q2(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 , Q3(θ) =

1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 .

The rotation parameter is fixed at θ = −π/5, yielding q11 = cos(θ) = 0.809. Although the
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dimensionality of the parameter space remains constant, the TSVD criterion involves only three

terms—one per variable—whereas the GMM estimator requires 15 moment conditions based on

fourth-order cumulants. Structural shocks are independently drawn from Student’s t-distributions

with 5, 9, and 12 degrees of freedom, respectively, thereby inducing substantial excess kurtosis.

Table 3 reports the finite-sample properties of the TSVD and GMM estimators under this

setting. The results clearly indicate that the TSVD estimator consistently outperforms both GMM

variants in terms of bias and RMSE across all sample sizes. For T = 200, the RMSE of TSVD

is approximately 45% lower than that of GMM-I and more than 50% lower than GMM-opt. As

the sample size increases, TSVD retains its advantage, whereas the GMM estimators suffer from

significant performance degradation due to the large number of moment conditions. This results in

both higher bias and larger RMSE, even with the optimal weighting matrix in GMM-opt. Notably,

even at T = 5000, the RMSE of the GMM estimators remains considerably higher than that of the

TSVD estimator.

This evidence highlights a key theoretical insight: maximizing a reduced set of cumulants, as in

TSVD, yields greater small-sample efficiency than minimizing a large collection of cross-cumulants,

as in GMM. The curse of dimensionality inherent in the GMM approach amplifies estimation

error, particularly in finite samples, whereas TSVD remains robust by focusing only on the most

informative cumulants.

5.2 Partial Identification Case

In the partial identification setting, we consider a trivariate system with only one non-Gaussian

structural shock. The orthogonal matrix is parameterized as:

Q(θ1, θ2) = Q1(θ1)×Q2(θ2),

where

Q1(θ1) =

 cos(θ1) sin(θ1) 0
− sin(θ1) cos(θ1) 0

0 0 1

 , Q2(θ2) =

 cos(θ2) 0 sin(θ2)
0 1 0

− sin(θ2) 0 cos(θ2)

 .

In this experiment, we assume that only the first structural shock exhibits non-Gaussianity

(excess kurtosis), while the remaining two shocks are Gaussian. Two cases are considered. In

case (1), the non-Gaussian shock is generated from a Student’s t-distribution with five degrees

of freedom. In case (2), which features weaker excess kurtosis, the non-Gaussian shock follows a

Student’s t-distribution with twelve degrees of freedom. The two Gaussian shocks are independently

generated from standard normal distributions.
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The evaluation focuses on the recovery of the first column of the orthogonal matrix Q, i.e.,

(q11, q21, q31)
⊤. We assess the performance of HOSVD, ALS, JADE, FastICA, and TSVD estima-

tors, each designed to extract the best rank-one orthogonal approximation.

The rotation parameters are fixed at θ1 = −π/3 and θ2 = −π/6. Table 4 reports empirical

bias and RMSE over 10,000 Monte Carlo replications for both excess kurtosis scenarios. As ex-

pected, performance improves under stronger non-Gaussianity. Across all configurations and for

all elements of the first column of Q, the TSVD estimator delivers the best results, consistently

outperforming alternative approaches. ALS and HOSVD follow in terms of accuracy, whereas Fas-

tICA and JADE perform less satisfactorily. Although differences diminish with larger sample sizes,

TSVD maintains a clear and persistent advantage.

6. Applications

We consider two applications to illustrate our approach. In the first, we revisit the estimation of

macroeconomic effects of fiscal policy. The second application examines the relevance of financial

shocks.

6.1 Effects of Fiscal Policy

As a first application, we reexamine the effects of fiscal policies on economic activity, following the

seminal paper by Blanchard and Perotti (2002). This application is particularly well suited because

non-Gaussianity enables the identification of only a subsystem, implying partial identification, as

shown in Guay (2021).

Consider the following trivariate SVAR process:ντ,t
νg,t
νy,t

 =

θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33

ϵ1,t
ϵ2,t
ϵ3,t

 , (12)

where ντ,t, νg,t, and νy,t represent the reduced-form innovations capturing the unanticipated move-

ments in taxes, government spending, and output, respectively, whereas ϵ1,t, ϵ2,t, and ϵ3,t correspond

to the structural shocks.

The dataset encompasses quarterly U.S. data spanning from the first quarter of 1980 to the

third quarter of 2015.20 The variable Output represents the logarithm of real GDP per capita.

Taxes are defined as the logarithm of total real government receipts, net of transfer payments per

20This starting date aligns with the selections made by Perotti (2004), Favero and Giavazzi (2009), and Bouakez
et al. (2014).
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capita, and Government Spending refers to the logarithm of the combined total of real government

consumption and gross government investment expenditures per capita.

These series are adjusted for inflation using the GDP deflator and for population size using total

population figures. Furthermore, the measurements for taxes and government spending encompass

the general government sector, which includes federal (both defense and non-defense), state, and

local government levels. Data are seasonally adjusted and are sourced from the National Income

and Product Accounts (NIPA). The total population data are retrieved from the Federal Reserve

Bank of St. Louis’s FRED database. The reduced-form model, as shown in (2), incorporates a

linear deterministic trend and eight lags. This configuration was selected as the most parsimonious

structure that ensures all reduced-form residuals are serially uncorrelated.

The rank tests developed by Guay (2021), described in Appendix E, reveal no significant evi-

dence of skewness, while one of the structural shocks exhibits statistically significant excess kurtosis.

This result implies that the rank of the entire system is not identified, and an additional restric-

tion must be imposed to achieve full identification. Nonetheless, the subsystem corresponding to

the non-mesokurtic structural shock is identified—specifically, the column of the impact matrix Θ

associated with this shock. Without loss of generality, we assume that this shock corresponds to

the first structural shock ϵ1,t.

The first column of Table 5 presents the results for the TSVD estimator. The estimator for θ11

is precisely valued at 0.471. In contrast, the estimated values for θ21 and θ31 are very close to zero,

indicating that they are not significantly different from zero. The values θ21 = 0 and θ31 = 0 suggest

that, at impact, the structural shock ϵ1,t affects only taxes. This shock can thus be economically

interpreted as a tax shock, denoted ϵτ,t = ϵ1,t.
21

In this application, the statistical properties of the subsystem linking reduced-form innovations

to the structural shock with excess kurtosis permit the economic identification of the tax shock. It is

important to emphasize, however, that local statistical identification does not in general guarantee

that structural shocks admit a meaningful economic interpretation.

Although the subsystem related to the tax shock is locally identified, the subsystem linking

the reduced-form innovations to the structural shocks ϵ2,t and ϵ3,t remains underidentified. To

achieve identification of this subsystem, and to facilitate comparison with the partial estimator,

one restriction must be imposed. Blanchard and Perotti (2002) propose two sets of identifying

restrictions, both of which include the condition θ23 = 0. Imposing θ23 = 0 assumes that the

21As demonstrated in Guay (2021), these findings are corroborated by applying Jarque-Bera tests to the reduced-
form innovations, with finite-sample critical values approximated through the bootstrap procedure of Kilian and
Demiroglu (2000). The hypothesis of symmetry is not rejected for any of the reduced-form innovations, while the
hypothesis of zero excess kurtosis is exclusively rejected for the reduced-form innovation associated with taxes, denoted
ντ,t.
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automatic and systematic government responses of government spending to changes in output are

zero. We also explore the imposition of θ32 = 0.

Accordingly, the estimation imposes either θ23 = 0 or θ32 = 0. Column 2 of Table 5 reports

the results for the GMM estimator of Guay (2021), using the identity matrix as the weighting

matrix under the restriction θ23 = 0. The results are very similar when θ32 = 0 is imposed. While

this procedure is consistent, it is not efficient. Estimation of the optimal weighting matrix requires

computing the covariance matrix of fourth-order unconditional moments, which are typically impre-

cisely estimated in small samples, as illustrated in our simulation experiments (see also Bonhomme

and Robin 2009; Keweloh 2020). Column 3 of Table 5 presents the results obtained with the opti-

mal weighting matrix. Although qualitatively similar to those based on the identity matrix, these

estimates are less precise. In particular, it is not possible to reject the null hypothesis that excess

kurtosis equals zero.

In contrast, the estimates obtained with the partial estimator are comparable to those achieved

with the identity matrix in terms of precision. However, in all three estimation methods, the

estimates of θ11 are numerically sizable and statistically significant, while the estimates of θ21 and

θ31 are negligible and insignificant.

The results have an important implication: the subsystem linking all reduced-form innovations

to the tax shock is effectively identified. Within this subsystem, we observe that the effectiveness

of tax policy is minimal. Specifically, the dynamic response of the output following a tax shock

is small but is not statistically significant. Furthermore, the tax multiplier - defined as the dollar

change in production in quarter t+ i resulting from a dollar reduction in the exogenous component

of taxes - is modest: it is zero at impact and reaches a peak of approximately 0.61 at 14 quarters

(see the bottom part of Table 5). Importantly, these results can be obtained using the partial

TSVD estimator without resorting to additional restrictions that are necessary to fully identify and

estimate the entire system.

6.2 Effects of Credit Shocks

In the second application, we reevaluate the macroeconomic effects of credit shocks. Inspired by

Boivin et al. (2020), we specify a VAR model with four monthly U.S. variables: the personal

consumption expenditure price index (PCE) inflation rate, the unemployment rate (UR), the dif-

ference between the BAA corporate bond yields and 10-year Treasury bond yields (BSPREAD),

and the federal funds rate (FFR). The BSPREAD is a commonly used proxy for the external fi-

nance premium of borrowing firms. The data span from January 1959 to December 2019. We

exclude observations from the COVID-19 pandemic period to avoid outliers that could affect the
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higher-order moments of the data (Lenza and Primiceri, 2022). Based on the Akaike Information

Criterion (AIC), we use 9 lags.

We begin by testing for the number of non-Gaussian structural shocks using the rank test. The

finite-sample properties of the test, reported in Appendix F, are examined using a data-generating

process (DGP) calibrated to this application. Both the Wald and likelihood-ratio tests exhibit

minimal size distortion while demonstrating strong power properties. Results for the Wald version

of the test are presented in Table 6. When considering only skewness, the test suggests at least

two non-Gaussian shocks, while an additional shock is detected when excess kurtosis is taken into

account.

However, non-Gaussianity is primarily concentrated in the first two elements, as the first two

eigenvalues of the third- and fourth-order cumulant matrices are dominant. Consequently, we focus

on the first two non-Gaussian shocks in the context of partial identification. This approach also

mitigates potential issues of weak identification. Since statistically identified shocks do not have a

clear economic interpretation ex ante, we examine whether these shocks can be associated with a

common non-Gaussian factor or with identification strategies previously adopted by Boivin et al.

(2020). To this end, we compare them with shocks identified through recursive ordering. The first

TSVD shock is highly correlated with the Cholesky innovation in the FFR equation, while the

second non-Gaussian shock comoves with the credit shock identified by innovations in the credit

spread equation. Overall, the shocks identified by non-Gaussianity appear to correspond closely

to structural shocks obtained under Cholesky identification, and do not appear to reflect common

non-Gaussian factors.

Figure 1 displays the dynamic responses to a credit shock that increases the credit spread.

The black line with a shaded area represents impulse responses along with the 90% bootstrapped

confidence intervals based on Boivin et al. (2020), which employs a recursive ordering to identify

the credit shock associated with the BSPREAD equation. We then add impulse responses implied

by the second TSVD shock. Following a negative credit supply shock, real activity and prices

decline, while monetary policy responds by lowering the interest rate—a typical scenario of an

adverse demand disturbance.

When shocks are identified using information contained in higher-order cumulants, the dynamic

effects on the macroeconomy are qualitatively similar, as depicted by the red, blue, and green lines.

These lines represent impulse responses obtained from our TSVD procedure, where we use both the

third- and fourth-order cumulants, only skewness, and only kurtosis, respectively. However, some

differences merit discussion. Recursive ordering implies that neither inflation nor the unemployment

rate can respond on impact. In contrast, our procedure does not impose timing restrictions, leaving
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all variables’ impact responses unrestricted. Consequently, both inflation and real activity respond

on impact, which aligns with DSGE models incorporating financial frictions (Christiano et al., 2014;

Del Negro et al., 2015). In addition, we note that information from both asymmetry and excess

kurtosis is relevant for identifying credit shocks.

These findings are robust to: considering other price or real activity measures like the CPI

or the industrial production, using the 1-year constant maturity rate instead of FFR to avoid

the zero-lower bound issue, or adding the volume of credit to the VAR. Thus, we have shown

that higher-order cumulants provide valuable information for better identifying and estimating the

macroeconomic effects of credit shocks.

7. Conclusion

The paper introduces a novel methodology for estimating non-Gaussian Structural Vector Autore-

gressive (SVAR) models based on Tensor Singular Value Decomposition (TSVD) applied to third-

and fourth-order cumulants. A central contribution of this approach is its capacity to handle both

complete and partial identification of structural shocks. This flexibility is important, as it enables

researchers to apply the methodology across a wider variety of settings, including those in which

full identification cannot be achieved. By doing so, the proposed framework expands the empirical

relevance of non-Gaussian SVAR models and provides a unified tool for exploiting higher-order

statistical information.

A promising avenue for future research is to develop frameworks that combine partial identi-

fication based on a subset of non-Gaussian structural shocks with more conventional identifying

restrictions, such as short-run, long-run, and sign restrictions. Such hybrid approaches could sub-

stantially broaden the applicability of non-Gaussian SVARs. Future work could also focus on

deriving robust extensions of the TSVD methodology to improve performance under outliers (see

Davis and Ng, 2023) and weak identification. Since skewness or excess kurtosis may be driven by

only a few extreme observations, future research should explore methods that explicitly downweight

influential data points or employ robust cumulant-based criteria. These extensions would not only

strengthen the reliability of inference in small samples, but also ensure that non-Gaussian SVAR

models remain informative and stable in empirically challenging environments.
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Table 1: Finite-sample distributions in the complete identification case: Excess kurtosis

T = 200 T = 500 T = 5000

(1) (2) (3) (1) (2) (3) (1) (2) (3)

Panel (a) - Bias

PML(1) 0.008 0.023 0.018 0.003 0.010 0.004 0.000 0.001 0.001
PML(2) 0.008 0.023 0.015 0.003 0.010 0.002 0.000 0.000 0.001
PML(3) 0.008 0.025 0.018 0.002 0.010 0.004 0.000 0.001 0.000
HOSVD 0.027 0.036 0.036 0.022 0.028 0.019 0.016 0.004 0.002
TSVD -0.009 -0.032 -0.022 -0.001 -0.008 -0.006 0.001 0.001 0.001
ALS 0.015 0.027 0.054 0.007 0.010 0.029 0.001 0.002 0.002

FastICA 0.018 0.039 0.032 0.007 0.016 0.010 0.003 0.003 0.002
JADE 0.013 0.028 0.024 0.006 0.013 0.008 0.001 0.002 0.001
GMM-I -0.014 0.019 0.001 -0.009 -0.008 -0.009 -0.002 0.001 0.001

GMM-opt -0.005 0.030 0.009 -0.004 -0.002 -0.003 -0.001 0.001 0.001

Panel (b) - Root mean-squared errors

PML(1) 0.083 0.143 0.124 0.042 0.089 0.067 0.012 0.022 0.018
PML(2) 0.083 0.145 0.122 0.043 0.089 0.070 0.012 0.021 0.020
PML(3) 0.105 0.161 0.123 0.061 0.102 0.064 0.017 0.025 0.016
HOSVD 0.156 0.182 0.168 0.140 0.156 0.130 0.117 0.057 0.037
TSVD 0.069 0.095 0.086 0.050 0.069 0.062 0.021 0.028 0.023
ALS 0.126 0.171 0.211 0.075 0.105 0.166 0.027 0.032 0.049

FastICA 0.115 0.182 0.153 0.071 0.113 0.091 0.049 0.049 0.046
JADE 0.104 0.160 0.134 0.063 0.102 0.083 0.021 0.028 0.023
GMM-I 0.109 0.193 0.153 0.075 0.110 0.092 0.030 0.034 0.029

GMM-opt 0.123 0.211 0.166 0.066 0.103 0.084 0.024 0.025 0.022

Note: The results reported are based on a Monte-Carlo exercise where we simulate N = 10, 000 samples of
i.i.d. random variables ϵ1,t and ϵ2,t. Sample sizes are: T = 200, T = 500, and T = 5000. The first row of the
table indicates the generating distributions of the ϵts: (1) ϵ1,t ∼ t(5) and ϵ2,t ∼ t(5); (2) ϵ1,t ∼ t(7) and ϵ2,t ∼ t(12)
and 3)ϵ1,t ∼ t(12) and ϵ2,t is drawn from a hyperbolic secant distribution. Once the ϵts are simulated, we compute
ut = Qϵt where the entries of Q are: q11 = cos(θ), q21 = − sin(θ), q12 = sin(θ), and q22 = cos(θ) with θ = −π/5 (so
q11 = 0.809). PML(1), PML(2) and PML(3) indicate the sets of distribution used for the pseudo maximum likelihood
where (1), (2) and (3) refer to the distributions specified above. Panel (a) reports the biases of the estimators (that
is E(q̂11 − q11)) and Panel (b) reports root-mean-squared errors (that is the square root of E(q̂11 − q1,1)

2).
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Table 2: Finite-sample distributions in complete identification case: Skewness

Skewness = −0.5231 Skewness = −0.9907

T=200 T=500 T=5000 T=200 T=500 T=5000
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

PML .082 .280 .089 .289 .084 .282 .067 .247 .059 .231 .017 .129
HOSVD .028 .158 .007 .082 .000 .023 .003 .062 .001 .038 .000 .012
TSVD .001 .112 .005 .072 .000 .021 .003 .047 .001 .029 .000 .009
ALS .025 .144 .006 .078 .000 .023 .003 .061 .001 .038 .000 .012

FastICA .049 .173 .019 .102 .003 .034 .016 .086 .008 .055 .001 .017
GMM-I .042 .192 .019 .102 .000 .023 .005 .080 .001 .038 .000 .012

GMM-opt .045 .185 .019 .102 .000 .023 .007 .076 .002 .038 .000 .012

Note: Entries are the empirical bias and root mean square errors (RMSE) for each experiment. For the
weaker skewness the distributions are: 1.6808× ϵ1,t∼ N(1, 1) with probability 0.5 and 1.6808× ϵ1,t∼ N(−1, 2.65) with
probability 0.5 when ϵ1,t exhibits a skewness of −0.5231 and ϵ2,t∼ N(0, 1). For the stronger skewcase ϵ2,t∼ N(0, 1)
as well as 2.1755× ϵ1,t∼ N(1, 1) with probability 0.7887 and 2.1755× ϵ1,t∼ N(−3.7326, 1) with probability 0.2113
when ϵ1,t exhibits a skewness of −0.9907. For each parametrization, 10,000 simulated samples of size T are generated.
Once the ϵts are simulated, we compute ut = Qϵt where the entries of Q are: q11 = cos(θ), q21 = − sin(θ), q12 = sin(θ),
and q22 = cos(θ) with θ = −π/5 (so q11 = 0.809). The Table reports the biases of the estimators (E(q̂11 − q11)) and
the root-mean-squared errors (the square root of E(q̂11 − q1,1)

2).

Table 3: Finite-sample performance in the complete identification case: Trivariate system with
excess kurtosis

T = 200 T = 500 T = 5000

Panel (a) — Bias

TSVD 0.015 0.004 0.000
GMM-I 0.066 0.040 0.009
GMM-opt 0.086 0.046 0.008

Panel (b) — Root Mean Squared Error

TSVD 0.128 0.076 0.026
GMM-I 0.235 0.186 0.079
GMM-opt 0.265 0.188 0.074

Note: This table reports results for a trivariate system with structural shocks generated from independent
Student’s t-distributions: ϵ1,t ∼ t(5), ϵ2,t ∼ t(9), and ϵ3,t ∼ t(12). The mixing matrix Q is constructed from a
sequence of rotation matrices and depends only on a single parameter θ = −π/5, yielding q11 = cos(θ) = 0.809. Bias
is defined as E[q̂11 − q11], and RMSE as

√
E[(q̂11 − q11)2]. All results are based on 10,000 Monte Carlo replications.

32



Table 4: Finite-sample distributions in the partial identification case: Excess kurtosis

T = 200 T = 500 T = 5000

Panel (a) - t(5)
q11 q21 q31 q11 q21 q31 q11 q21 q31

Bias

HOSVD 0.006 0.134 0.088 0.004 0.019 0.013 0.001 0.001 0.001
TSVD 0.013 0.078 0.057 0.005 0.016 0.012 0.001 0.001 0.001
ALS 0.005 0.089 0.050 0.004 0.016 0.011 0.001 0.001 0.001

FastICA -0.015 0.286 0.196 -0.010 0.127 0.085 -0.002 0.023 0.016
JADE -0.065 0.752 0.493 -0.064 0.755 0.503 -0.070 0.744 0.499

Root mean-squared errors

HOSVD 0.188 0.399 0.328 0.119 0.129 0.136 0.040 0.030 0.039
TSVD 0.173 0.295 0.262 0.114 0.112 0.120 0.039 0.029 0.037
ALS 0.179 0.307 0.264 0.117 0.117 0.125 0.040 0.030 0.039

FastICA 0.212 0.574 0.484 0.151 0.377 0.315 0.062 0.160 0.137
JADE 0.296 0.946 0.757 0.294 0.948 0.769 0.301 0.943 0.758

Panel (b) - t(12)
q11 q21 q31 q11 q21 q31 q11 q21 q31

Bias

HOSVD -0.031 0.499 0.333 -0.010 0.297 0.202 0.003 0.006 0.002
TSVD 0.010 0.271 0.205 0.011 0.158 0.114 0.003 0.006 0.002
ALS -0.035 0.346 0.182 -0.013 0.191 0.100 0.002 0.006 0.002

FastICA -0.052 0.607 0.416 -0.035 0.436 0.293 -0.011 0.106 0.068
JADE -0.061 0.756 0.498 -0.063 0.742 0.488 -0.064 0.745 0.503

Root mean-squared errors

HOSVD 0.265 0.773 0.625 0.233 0.592 0.486 0.073 0.054 0.070
TSVD 0.236 0.577 0.481 0.206 0.430 0.363 0.072 0.053 0.069
ALS 0.256 0.611 0.486 0.217 0.448 0.361 0.072 0.054 0.070

FastICA 0.278 0.846 0.696 0.248 0.714 0.586 0.120 0.345 0.290
JADE 0.292 0.950 0.761 0.294 0.940 0.756 0.296 0.943 0.767

Note: The results reported are based on a Monte-Carlo exercise where we simulate N = 10, 000 samples.
Different sample lengths T are considered: T = 200 (left part of the table), T = 500 (middle part of the table), and
T = 5000 (right part of the table).
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Table 5: Parameter Estimates and Multipliers (θ23 = 0)

Parameter Estimates
Parameter TSVD W = I Efficient W

θ11 0.0471∗∗∗ 0.0474∗∗∗ 0.0512∗∗∗

θ12 0.0026 0.0056
θ13 0.0089∗∗ 0.0087
θ21 0.0001 0.0001 −0.0003
θ22 0.0068∗∗∗ 0.0069∗∗∗

θ23 0.0000† 0.0000†

θ31 0.0003 −0.0001 0.0005
θ32 0.0017∗∗∗ 0.0020
θ33 0.0048∗∗∗ 0.0048∗∗∗

C1,1,1,1(ϵ) 2.8259∗∗∗ 2.7995∗∗∗ 3.056

Quarter Tax Multiplier

1 0.00 0.00 0.00
4 0.05 0.05 0.05
8 0.24 0.24 0.24

Peak 0.61 0.61 0.61
[14] [14] [14]

Notes. The tax multiplier measures the dollar change in output at a given horizon that results from a dollar decrease
(increase) in the exogenous component of taxes. *, **, and *** indicate, respectively, that the 90, 95, and 99 percent
confidence intervals do not include zero, where the confidence intervals are computed from 5,000 bootstrap samples. †

indicates that the parameter is constrained. Numbers between brackets indicate the quarters in which the maximum
value of the multiplier is reached.

Table 6: Testing for the number of non Gaussian structural shocks

r=0 r=1 r=2 r=3

Skewness Wald stat 2194.4 748.1 88.3 29.6
CV (5%) 187.4 146.4 94.7 45.8
CV (1%) 221.8 181.6 119.2 58.7
Eigenvalues [2.00 0.91 0.08 0.04]

Kurtosis Wald stat 849970 71210 6699.3 1037.6
CV (5%) 1297.8 1486.5 1167.2 917.7
CV (1%) 1665 1906.5 1512.6 1189
Eigenvalues [1078.6 89.4 7.8 1.4]

Skewness / Wald stat 852160 72073 6849.8 1111.2
Kurtosis CV (5%) 1401.5 1648.6 1253.2 960.9

CV (1%) 1787.5 2158.1 1593.6 1267.3
Eigenvalues [1080.5 90.3 7.9 1.5]

Notes. This table reports rank test results for the second application. The first block allows for asymmetry only,
the second for excess kurtosis and the third for both. Columns r = 0 to r = 3 indicate the number of non-Gaussian
structural shocks under the null. The fourth line in each block reports the eigenvalues of the corresponding cumulant.
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Figure 1: Dynamic responses to credit shocks

Note: The effects of credit shocks identified via Cholesky decomposition are displayed in black and with the corresponding 90%

confidence intervals. Red, blue and green lines show impulse responses obtained from using 3th and 4th; only 3th; and only

4th moments respectively.

A Properties of the cumulants

For zero-mean real stochastic variables the cumulants up to order 4 are given by

Cum(X1) = E(X1)

Cum(X1, X2) = E(X1X2)

Cum(X1, X2, X3) = E(X1X2X3)

Cum(X1, X2, X3, X4) = E(X1X2X3X4)− E(X1X2)E(X3X4)

−E(X1X3)E(X2X4)− E(X1X4)E(X2X3)

Cumulants have the following important properties:

• (Scaling) If X1, X2, . . . , XN are multiplied with constants a1, a2, . . . , aN , then

Cum(a1X1, a2X2, . . . , aNXN ) =

N∏
i=1

aiCum(X1, X2, . . . , XN )
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• (sum) Cumulants of a sum are the sum of the cumulants:

Cum(X1 + Y1, X2, . . . , XN ) = Cum(X1, , X2, . . . , XN ) + Cum(Y1, X2, . . . , XN )

where Y1 is a real stochastic variable. This does not hold for moments and this explains the
term cumulant.

• (Multilinearity) If a real stochastic vector X, with the components X1, X2, . . . , XN , is trans-
formed into a stochastic vector Y by a real matrix multiplication Y = AX, with A ∈ RJ×N ,
then we have for cumulants of order d

Cumd(Y ) = ACumd(X) (A⊗A · · · ⊗A)′ .

in which (A⊗A · · · ⊗A) is the Kronecker product of d− 1 matrices A.

• (Symmetry) Cumulants are symmetric in their arguments, i.e.

Cum(X1, X2, . . . , XN ) = Cum(XP (1), XP (2), . . . , XP (N)),

in which P is an arbitrary permutation of (1, 2, . . . , N).

• (Independent variables) If stochastic variables X1, X2, . . . , XN are independent, then we have

Cum(X1, X2, . . . , XN ) = 0.

• (Gaussianity) If a stochastic variable is Gaussian, then we have

Cumd(X) = 0;

for d > 2. Higher-order cumulants of a Gaussian variable are zero.

• (Non-Gaussianity) There exists no distributions with a bound n such that Cumd(X) ̸= 0 for
3 ≤ d ≥ n and Cumd(X) = 0 for d > n.

• (Gram-Charlier series expansion) For a standardized distribution pX(x) of a real random
variable X, with mean mX = 0 and variance σ2

X = 1, the Gram-Charlier series expansion is
given by

pX(x) = p̂X(x)

{
1 +

1

3!
Cum3(X)h3(x) +

1

4!
Cum4(X)h4(x) +

1

5!
Cum5(X)h5(x)

+
1

6!
[Cum6(X) + 10(Cum3(X))2]h6(x) + . . .

}
,

where p̂X(x) is the probability density function of a standardized gaussian variable and hi(x)
represents the ith Hermite polynomial.
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B Higher-order Tensors

Higher-order tensors are gaining importance due to developments in the field of higher-order statis-
tics (HOS), such as higher-order moments, cumulants, spectra, and cospectra. In particular, HOS
are represented as symmetric higher-order tensors. A tensor is a multidimensional array. More
formally, an Nth-order tensor is an element of the tensor product of N vector spaces. A first-order
tensor is a vector, a second-order tensor is a matrix, and tensors of order three or higher are called
higher-order tensors. Higher-order tensors generalize vectors and matrices to dimensions of order
N > 2. Multilinear algebra is the algebra of higher-order tensors.

The order of a tensor is the number of dimensions, also known as ways or modes. A Nth-
order tensors (also called a N -way tensor) is defined as A ∈ RI1×I2×...×IN or A ∈ CI1×I2×...×IN for
respectively real and complex values.

Definition 5 The inner product ⟨A,B⟩ of two tensors A,B ∈ RI1×I2×...×IN is defined as

⟨A,B⟩ def
=

I1∑
i1

I2∑
i2

· · ·
IN∑
iN

ai1i2···iN bi1i2···iN .

This is the sum of the multiplication of the elements with the same indice for A and B.

Definition 6 The Frobenius norm of a tensor A ∈ RI1×I2×...×IN is defined as

∥A∥ def
=

√
⟨A,A⟩.

Definition 7 The outer product A◦B ∈ RI1×I2×...×IN×J1×J2×...×IM of a tensor A ∈ RI1×I2×...×IN

and a tensor B ∈ RJ1×J2×...×IM is defined by

(A ◦ B)i1i2···iN j1j2···jM
def
= ai1i2···iN bj1j2···jM

for all indices.

A tensor is called cubic if every mode is the same size, i.e, A ∈ RI×I×...×I . A cubical tensor
is called supersymmetric (or symmetric) if its elements remain constant under any permutation of
the indices.

The unfolding is the process of reordering the elements of a Nth-order tensor in a matrix (also
called Matricization) The mode-n unfolding of a tensor A ∈ RI1×I2×...×IN is denoted by A(n) and
arranges the mode-n fibers to the the columns of the resulting matrix. For a tensor A2×2×2,

A(1) =

[
a111 a121 a112 a122
a211 a221 a212 a222

]
, A(2) =

[
a111 a211 a112 a212
a121 a221 a122 a222

]
and

A(3) =

[
a111 a211 a121 a221
a112 a212 a122 a222.

]
.

For a symmetric tensor A ∈ RI1×I2×...×IN , mode-n unfoldings of the tensor are all equal, i.e.,
A(1) = A(2) = · · · = A(N). The vectorization of a tensor is denoted vec(A).
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Definition 8 The n-mode product of a tensor A ∈ RI1×I2×...×IN by a matrix U ∈ RJn×In is
denoted by A×n U and is of size I1 × · · · × In−1 × Jn × In+1 × · · · IN . This is defined as

(A×n U)i1···in−1jnin+1···iN =

In∑
in=1

ai1···in−1inin+1···iNujnin

for all index values.

This can also be expressed in terms of unfolded tensors:

X = A×n U ⇔ X(n) = UA(n).

For distinct modes in a series of multiplications, the order of the multiplication is irrelevant, i.e.,

A×n U ×m V = A×m V ×n U.

If the modes are the same, then

A×n U ×n V = A×n (V U).

Consider A ∈ RI1×I2×...×IN and U (n) ∈ RJn×In for all n ∈ 1, 2, . . . , N . We have the following
equivalent between the n-mode product and the Kronecker product for any n ∈ 1, 2, . . . , N ,

Y = A×1 U
(1) ×2 U

(2) · · · ×N U (N) ⇔

Y(n) = U (n)A(n)

(
U (N) ⊗ · · · ⊗ U (n+1) ⊗ U (n−1) ⊗ · · · ⊗ U (1)

)′
.

The Khatri-Rao product is a columnwise Kronecker product. For matrices A ∈ RI×K and B ∈
RJ×K , their Khatri-Rao product is denoted by A ⊙ B and the result is a matrix of size (IJ) ×K
given by

A⊙B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK ] .

If a and b are vectors, the Khatri-Rao and the Kronecker products are identical a⊗ b = a⊙ b.
Fibers are the higher-order analogue of matrix rows and columns. A fiber is defined by fixing

every index but one. A matrix column is a mode-1 fiber and a matrix row is a mode-2 fiber. For
matrix A with element (i, j) the mode-1 is A(:, j) with Matlab colon notation and the mode-2 fiber
is A(j, :). For a third-order tensor, columns (mode-1 fiber), rows (mode-2 fiber) and tube (mode-3
fiber) are respectively, A(:, j, k), A(j, :, k) and A(j, k, :). Slices are two-dimensional sections of a
tensor, defined by fixing all but two indices. For a third order tensor the slices are A(:, i, k) (the
horizontal slice), A(:, j, ; ) (the lateral slice) and A(j, :, :) (the frontal slice).

Definition 9 Rank-1 tensors An Nth-order tensor A ∈ RI1×I2×...×IN is rank one if it can be
written as the outer product of N vectors, i.e.,

A = u(1) ◦ u(2) ◦ · · · ◦ u(N)

where the symbol “◦” represents the vector outer product.
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This means that each element of the tensor is the product of the corresponding vector elements. For

a Nth-order tensor A and N vectors u(1),u(2), . . . ,u(N), this implies that ai1i2...iN = u
(1)
i1

u
(2)
i2

· · ·u(N)
iN

for all values of the indices. For a matrix, this is a rank-1 matrix which can be written as an outer
product of two vectors (or equivalently by a singular value decomposition of rank-1).

Definition 10 The rank of a tensor The rank of a tensor A denoted rank(A) is the minimal
number of rank-1 tensors that yield A in a linear combination.

We now provide a general definition of a tensor decomposition and introduce the two most
common decompositions: the Tucker decomposition and the CP decomposition.

Definition 11 Tensor Decompositions A decomposition of a tensor A ∈ RI1×I2×···×IN is given
by

A = S ×1 U
(1) ×2 U

(2) · · · ×N U(N),

where S ∈ RR1×R2×···×RN is called the core tensor, and U(n) ∈ RIn×Rn for n = 1, . . . , N are referred
to as the side matrices. The operator ×n denotes the mode-n product of tensors.22

Let U(n) =
[
u
(n)
1 ,u

(n)
2 , . . . ,u

(n)
Rn

]
for all n. Then, the decomposition of A can equivalently be

expressed as a sum of outer-product tensors:

A =

RN∑
rN=1

· · ·
R1∑

r1=1

sr1r2···rN u(1)
r1 ◦ u(2)

r2 ◦ · · · ◦ u(N)
rN

, (13)

where ◦ denotes the outer product.
In particular, if S is diagonal, i.e., sr1r2···rN = 0 except when r1 = r2 = · · · = rN , then

A =

r∑
i=1

sii···i u
(1)
i ◦ u(2)

i ◦ · · · ◦ u(N)
i , (14)

where r = min{R1, R2, . . . , RN}.

This decomposition can also be expressed in matrix form. For a general tensorA ∈ RI1×I2×···×IN ,
the mode-n unfolding satisfies

A(n) = U(n)S(n)

(
U(N) ⊗ · · · ⊗U(n+1) ⊗U(n−1) ⊗ · · · ⊗U(1)

)′
,

where A(n) and S(n) denote the mode-n unfoldings of A and the core tensor S, respectively.
The Tucker decomposition (Tucker, 1963) is represented by the decomposition (13), where the

factor matrices U(n) are often referred to as the principal components in the respective mode-n. In
this sense, the Tucker decomposition is a form of higher-order PCA. The core tensor S expresses
the interactions between the elements of the different factor matrices U(n) for n = 1, . . . , N .

22The mode-n product of a tensor A ∈ RI1×I2×···×IN with a matrix U ∈ RJn×In is denoted by A ×n U . See
Appendix B for a formal definition.
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Any tensor can be written in Tucker form, and the unconstrained Tucker decomposition is not
unique. Imposing the orthogonality of the factor matrices U(n), such that U(n)U(n)′ = I, implies
that the core tensor S is given by:

S = A×1 U
(1)′ ×2 U

(2)′ · · · ×N U(N)′,

or equivalently:

S(n) = U(n)′A(n)

(
U(N) ⊗ · · · ⊗U(n+1) ⊗U(n−1) ⊗ · · · ⊗U(1)

)
.

For a symmetric tensor, U(n) = U for all n. In this decomposition, the core tensor is all-
orthogonal, i.e., S(n)S

′
(n) = diag(λ(n)) for all mode-n of the core tensor S, where the vector λ(n)

contains the singular values of A(n).
Formally, the CANDECOMP/PARAFAC (CP) decomposition represents a tensor as a sum of

rank-one components, each expressed as the outer product of vectors u
(n)
i for i = 1, . . . , r and mode

n. These vectors can be scaled arbitrarily, provided that the product of their scalings remains
unchanged, reflecting the inherent indeterminacy of the decomposition. This corresponds exactly
to equation (14), in which the associated core tensor S is diagonal.

For a symmetric tensor A, we have u
(1)
i = u

(2)
i = · · · = u

(N)
i , which implies that the CP

decomposition simplifies to

A =

r∑
i=1

λi ui ◦ ui ◦ · · · ◦ ui.

Equivalently, in matrix form this can be expressed as

A = U diag(λi) (U⊙ · · · ⊙U)′, (15)

where ⊙ denotes the Khatri–Rao product of N − 1 terms and U = [u1,u2, . . . ,ur] . The smallest
integer r for which this representation holds is called the rank of the tensor A. In this case, the
entries of the associated core tensor S satisfy si,i,...,i = λi for i = 1, . . . , r, while all other elements
are zero.

In the CP decomposition, no orthogonality constraints are imposed on the factor matrices U(n),
and uniqueness is not guaranteed. Instead, uniqueness can be achieved under conditions that are
generally much weaker than orthogonality (see Kolda and Bader (2009) for a detailed discussion of
these conditions).

The method to compute the Tucker decomposition with orthogonal matrices is better known as
the higher-order SVD (HOSVD), also called multilinear SVD (MLSVD), or its truncated version
for model reduction. De Lathauwer et al. (2000a) show that the HOSVD is a generalization of
matrix SVD and that it always exists. They demonstrate how to compute the leading left singular
vectors of A(n). The HOSVD decomposition of a symmetric tensor is given by the following SVD:

A(n) = A = UΛV ′,

where Λ is a diagonal matrix containing the singular values and V is the matrix of right singular
vectors, for all n = 1, 2, . . . , N , from the invariant mode-n unfolding.
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Using the resulting left singular vectors U, the HOSVD is given by:

A = S ×1 U×2 U · · · ×N U,

where S = A×1 U
′ ×2 U

′ · · · ×N U′, or equivalently:

S = U′A (U⊗ · · · ⊗U⊗U⊗ · · · ⊗U) ,

where ⊗ represents the Kronecker product.
The link between the higher-order singular value decomposition (HOSVD) and the eigenvalue

decomposition (EVD), also known as the higher-order eigenvalue decomposition (HOEVD), is
straightforward. For the unfolding matrix A, we have:

AA′ = UDU′,

where D = Λ2 is a diagonal matrix with the eigenvalues on its diagonal (see De Lathauwer et al.
(2000a)).

However, the truncated HOSVD is not optimal in terms of providing the best least-squares fit
but it serves as a good initialization for iterative algorithms such as alternating least squares (ALS).
De Lathauwer et al. (2000b) proposed an efficient method for refining the factor matrices, known
as the higher-order orthogonal iteration (HOOI), which can be viewed as a generalization of the
power method for matrices (see Golub and Van Loan (2013), p. 454).

However, the truncated HOSVD is not optimal in terms of giving the best fit as measured as
the least square but it is a good starting point for an iterative ALS (alternating least squares)
algorithm. De Lathauwer et al. (2000b) proposed an efficient techniques for calculating the factor
matrices called the higher-order orthogonal iteration (HOOI) which is an adaptation of the power
method for matrices (see Golub and Van Loan (2013), p. 454).

Assuming that the rank r is known, several algorithms are available to compute a CP decom-
position, with the alternating least squares (ALS) method being among the most widely used. The
goal of ALS is to find an approximation that minimizes the quadratic loss function

min
Â

∥A − Â∥2F , (16)

where Â = Ŝ ×1 Û(1) ×2 Û(2) · · · ×N Û(N), Ŝ is a diagonal core tensor, and ∥ · ∥F denotes the
Frobenius norm.

C Proofs

Proof of Proposition 2
For the symmetric TSVD, the mode-n unfolding satisfies

A(n) = A = U diag(λ)
(
U ⊙ · · · ⊙ U

)′
,

where the Khatri–Rao product involves N − 1 terms. Consider

u′iA(n) (ui ⊗ · · · ⊗ ui).
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Substituting the decomposition gives

u′iA (ui ⊗ · · · ⊗ ui) = u′iU diag(λ) (U ⊙ · · · ⊙ U)′(ui ⊗ · · · ⊗ ui).

Since u′iU = e′i, where ei is the i-th canonical basis vector in Rr, this reduces to

= e′i diag(λ)
(
(U ′ui)⊙ · · · ⊙ (U ′ui)

)
.

Because U ′ui = ei, we obtain
(U ′ui)⊙ · · · ⊙ (U ′ui) = ei,

so that
u′iA (ui ⊗ · · · ⊗ ui) = e′i diag(λ) ei = λi.

If r < n, then the matrix U ∈ Rn×r has orthonormal columns, and the above argument still holds
with ei ∈ Rr.

Proof of Theorem 4
The proofs for consistency and the asymptotic distribution are provided for C3

ϵ ; the derivation
is similar for C4

ϵ .

Consistency: As the criterion functions

r∑
i=1

λ2
i,T =

r∑
i=1

(
q′iĈ

3
u,T (qi ⊗ qi)

)2
,

and
r∑

i=1

λ2
i =

r∑
i=1

(
q′iC

3
u(qi ⊗ qi)

)2
,

are continuous, it follows that λ2
i,T

p→ λ2
i for all qi, given that Ĉ3

u,T

p→ C3
u. By the compactness of

the set of orthogonal matrices Qr, we have

sup
Qr∈Qr

∣∣∣∣∣
r∑

i=1

λ2
i,T −

r∑
i=1

λ2
i

∣∣∣∣∣ p→ 0.

The sum
∑r

i=1 λ
2
i attains its maximum at any permutation or change in the signs of the columns.

This implies that there exists a sequence of maximizers such that Q̂r,T
p→ Qr for all qi, i = 1, . . . , r,

and Qr = [q1 · · · qr].

Asymptotic distribution: The partial derivatives of the Lagrangian in finite samples are given
by:

∂LT

∂qi
: 2λ̂i,T v̂i,T − 2µ̂iiq̂i −

∑
j ̸=i

µ̂ij q̂j = 0, (17)
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for i = 1, . . . , r, where

v̂i,T :=
∂q̂′iĈ

3
u,T (q̂i ⊗ q̂i)

∂qi
= 3Ĉ3

u,T (q̂i ⊗ q̂i),

with q̂′iv̂i,T = 3λ̂i,T , λ̂i,T = q̂′iĈ
3
u,T (q̂i ⊗ q̂i), and

q̂′iq̂j = 0, for i < j,

q̂′iq̂i = 1, for i = 1, . . . , r.

Multiplying the first-order conditions (17) by q̂′i yields:

2λ̂i,T q̂
′
iv̂i,T − 2µ̂ii = 0,

which implies:
6λ̂2

i,T − 2µ̂ii = 0,

or µ̂ii = 3λ̂2
i,T .

Therefore, the finite sample first-order conditions (FOC)

λ̂i,T q̂
′
j v̂i,T = λ̂j,T q̂

′
iv̂j,T

with q̂′iq̂j = 0 for i < j and q̂′iq̂i = i for i = 1, . . . , r, provide the estimate of Qr.
A first-order Taylor expansion around the true value Qr yields

λ̂i,T q̂
′
j v̂i,T − λ̂j,T q̂

′
iv̂j,T = λi,T q

′
jĈ

3
u,T (qi ⊗ qi)− λj,T q

′
iĈ

3
u,T (qj ⊗ qj)

+ q′jĈ
3
u,T (qi ⊗ qi)(λ̂i,T − λi,T )− q′iĈ

3
u,T (qj ⊗ qj)(λ̂j,T − λj,T )

+ λi,T (qi ⊗ qi)
′Ĉ3′

u,T (q̂j − qj)− λj,T (qj ⊗ qj)
′Ĉ3′

u,T (q̂i − qi)

+ λi,T q
′
j(v̂i,T − vi,T )− λj,T q

′
i(v̂j,T − vj,T ) + op(1).

Using Ĉ3
u,T = C3

u + (Ĉ3
u,T − C3

u) and (Ĉ3
u,T − C3

u) = Op(T
−1/2), and noting that λi,T =

λi + (λi,T − λi) = λi + q′i(Ĉ
3
u,T −C3

u)(qi ⊗ qi) = λi +Op(T
−1/2), we find that the first line is equal

to

λiq
′
j(Ĉ

3
u,T −C3

u)(qi ⊗ qi)− λjq
′
i(Ĉ

3
u,T −C3

u)(qj ⊗ qj) + op(T
−1/2)

by q′jC
3
u(qi ⊗ qi) = 0 and q′iC

3
u(qj ⊗ qj) = 0.

For the second line, since λ̂k,T − λk,T = 3(qk ⊗ qk)
′Ĉ3′

u,T (q̂k − qk) + op(1) for k = i, j and

q̂k = qk + op(1), we obtain that λ̂k,T = λk,T + op(1) for k = i, j. By the same arguments as above
for C3

u, the second line becomes op(T
−1/2).

For the third line,

λi(qi ⊗ qi)
′C3

u
′
(q̂j − qj)− λj(qj ⊗ qj)

′C3
u
′
(q̂i − qi) + op(T

−1/2),

and using C3
u(qi ⊗ qi) = λiqi (similarly for j), we obtain

λ2
i q

′
i(q̂j − qj)− λ2

jq
′
j(q̂i − qi) + op(T

−1/2).
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Finally, using v̂i,T = 3Ĉ3
u,T (q̂i ⊗ q̂i), the last line is equal to

3λi,T q
′
j

∂Ĉ3
u,T (qi ⊗ qi)

∂q′i
(q̂i − qi)− 3λj,T q

′
i

∂Ĉ3
u,T (qj ⊗ qj)

∂q′j
(q̂j − qj).

Using Ĉ3
u,T = C3

u + (Ĉ3
u,T −C3

u) and q̂k = qk + op(1), we get

3λi

∂q′jC
3
u(qi ⊗ qi)

∂q′i
(q̂i − qi)− 3λj

∂q′iC
3
u(qj ⊗ qj)

∂q′j
(q̂j − qj) + op(T

−1/2),

and given that q′jC
3
u(qi ⊗ qi) = 0 for i ̸= j, the left-hand side of the last line is then op(T

−1/2).
The first-order Taylor expansion around the true value Q gives

λiq
′
j(Ĉ

3
u,T −C3

u)(qi ⊗ qi)− λjq
′
i(Ĉ

3
u,T −C3

u)(qj ⊗ qj) + λ2
i q

′
i(q̂j − qj)− λ2

jq
′
j(q̂i − qi) + op(T

−1/2).

Since q̂′j q̂i = 0 for i ̸= j, this implies

q′j(q̂i − qi) + q′i(q̂j − qj) + op(1) = 0.

We then have

q′i(q̂j − qj) =
λjq

′
i(Ĉ

3
u,T −C3

u)(qj ⊗ qj)− λiq
′
j(Ĉ

3
u,T −C3

u)(qi ⊗ qi)

λ2
i + λ2

j

+ op(T
−1/2),

and similarly,

q′j(q̂i − qi) =
λiq

′
j(Ĉ

3
u,T −C3

u)(qi ⊗ qi)− λjq
′
i(Ĉ

3
u,T −C3

u)(qj ⊗ qj)

λ2
i + λ2

j

+ op(T
−1/2)

for all i ̸= j.
The above equations can be represented in matrix form as

Q′
r

(
Q̂r,T −Qr

)
= −Ξ ((Qr ⊙Qr)⊗Qr)

′ vec(Ĉ3
u,T −C3

u) + op(T
−1/2),

and using vec
(
Q′

r

(
Q̂r,T −Qr

))
= (Ir ⊗Q′

r)
(
vec(Q̂r,T )− vec(Qr)

)
, this implies

T 1/2
(
vec(Q̂r,T )− vec(Qr)

)
= (Ir ⊗Qr) Ξ ((Qr ⊙Qr)⊗Qr)

′ T 1/2
(
vec(Ĉ3

u,T −C3
u)
)
+ op(1).

The matrix Ξ is defined as:

Ξ = (Ir2 − Pr,r)F,

where Pr,r = Ir2(vi, :) is a mod-r perfect shuffle permutation matrix. The vector vi = [(1 : r : n), (2 :
r : n), . . . , (r : r : n)] specifies the column where the “1” occurs in row i, with zeroes elsewhere, and
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n = r2 (see Golub and Van Loan, 2013, pp. 18–20). For example, with r = 2,

vi = [1 3 2 4] and P2,2 = I4(vi, :) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

For r = 3, we have vi = [1 4 7 2 5 8 3 6 9], and so on.
Next, we define the r × r matrix W :

W =

[
λi

λ2
i + λ2

j

]
i,j=1,...,r

,

where each element (i, j) of the matrix W is defined as above. Let w = vec(W ′), and matrix F is
then the following r2 × r2 diagonal matrix:

F = diag(w).

For r = 2, this matrix F is given by

F =


λ1

λ2
1+λ2

1
0 0 0

0 λ1

λ2
1+λ2

2
0 0

0 0 λ2

λ2
2+λ2

1
0

0 0 0 λ2

λ2
2+λ2

2

 .

For the case with non-mesokurtic structural shocks, the finite sample partial derivatives of the
Lagrangian are:

∂LT

∂qi
: 2λ̂i,T v̂i,T − 2µ̂iiq̂i −

∑
j ̸=i

µ̂ij q̂j = 0, (18)

for i = 1, . . . , r, where

v̂i,T :=
∂q̂′iĈ

4
u,T (q̂i ⊗ q̂i ⊗ q̂i)

∂qi
= 4Ĉ3

u,T (q̂i ⊗ q̂i ⊗ q̂i),

with q̂′iv̂i,T = 4λ̂i,T , where λ̂i,T = q̂′iĈ
4
u(q̂i ⊗ q̂i ⊗ q̂i), and

q̂′iq̂j = 0, for i < j,

q̂′iq̂i = 1, for i = 1, . . . , r.

The remaining derivation follows similarly to the case with skewness.
Now, consider the case where there are r1 structural shocks with skewness and r2 that are
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non-mesokurtic, with r1 + r2 = r. The optimization problem is then given by:

max
Q′

rQr=Ir

 r1∑
i=1

λ2
3,i +

r2∑
j=1

λ2
4,j

 ,

where λ3,i = C3
i,i,i(ϵ) and λ4,j = C4

j,j,j,j(ϵ), with i ̸= j.
Let Qr = [Qr1 Qr2], where Qr1 consists of the first r1 columns of the orthogonal matrix Qr,

and Qr2 contains the remaining columns. Define Ψ(u) =
[
C(u)3 C(u)4

]
.

The finite sample partial derivatives of the respective Lagrangian are the same as in (17) for the
first term of the objective function, i.e., λ2

3,i, and as in (18) for the second term. A similar derivation
as in the two preceding cases straightforwardly gives the following asymptotic distribution:

T 1/2

[
vec(Q̂r1,T )− vec(Qr1)

vec(Q̂r2,T )− vec(Qr2)

]
=

[
(Ir1 ⊗Qr1)Ξ1

(Ir2 ⊗Qr2)Ξ2

] [
((Qr1 ⊙Qr1)⊗Qr1)

′ 0
0 ((Qr2 ⊙Qr2 ⊙Qr2)⊗Qr2)

′

]
×T 1/2(vec(Ψ̂u,T )− vec(Ψu)) + op(1).

where Ξ1 and Ξ2 correspond to the matrix Ξ defined above, containing the terms related to the
columns r1 and r2 of the orthogonal matrix Qr. This asymptotic distribution therefore depends on
the variance-covariance matrix of Ψ̂u,T , which is also a function of the first-stage VAR reduced-form
estimation.

Finally, for the case where the r structural shocks exhibit both skewness and non-mesokurticity,
the maximization problem is given by:

max
Q′

rQr=Ir

r∑
i=1

(
λ2
3,i + λ2

4,i

)
= max

Q′
rQr=Ir

r∑
i=1

(
C2
i,i,i(ϵ) + C2

i,i,i,i(ϵ)
)
.

The finite sample partial derivatives of the Lagrangian are:

∂LT

∂qi
: 2(λ̂3,i,T v̂3,i,T + λ̂4,i,T v̂4,i,T )− 2µ̂iiq̂i −

∑
j ̸=i

µ̂ij q̂j = 0,

for i = 1, . . . , r, where

v̂3,i,T :=
∂q̂′iĈ

3
u,T (q̂i ⊗ q̂i)

∂qi
= 3Ĉ3

u,T (q̂i ⊗ q̂i),

v̂4,i,T :=
∂q̂′iĈ

4
u,T (q̂i ⊗ q̂i ⊗ q̂i)

∂qi
= 4Ĉ4

u,T (q̂i ⊗ q̂i ⊗ q̂i),

with q̂′iv̂3,i,T = 3λ̂3,i,T , q̂
′
iv̂4,i,T = 4λ̂4,i,T , where λ̂3,i,T = q̂′iĈ

3
u(q̂i⊗ q̂i) and λ̂4,i,T = q̂′iĈ

4
u(q̂i⊗ q̂i⊗ q̂i).

We also have

q̂′iq̂j = 0, for i < j,

q̂′iq̂i = 1, i = 1, . . . , r.
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Following similar derivations as above, we obtain the asymptotic distribution:

T 1/2
(
vec(Q̂r,T )− vec(Qr)

)
= (I ⊗Qr)Ξ

[
((Qr ⊙Qr)⊗Qr)

′

((Qr ⊙Qr ⊙Qr)⊗Qr)
′

]
×

T 1/2(vec(Ψ̂u,T )− vec(Ψu)) + op(1).

D GMM Framework

The estimator of the structural parameters is based on GMM (Hansen (1982)). We need to embed
the estimation procedure in a sequential procedure to derive the optimal GMM estimator of the
structural parameters (see Newey (1984)). The estimation procedure depends first on the estimation
of the reduced form (2). This estimation is performed by exploiting the following orthogonality
conditions between the lagged values of the variables of interest and the statistical innovations,

Eg1(Zt,Γ) =

[
E (Xt−1 ⊗ νt)

E (vech(Σv)− vech(νtν
′
t))

]
= 0, (19)

where Zt =
(
x′t, . . . , x

′
t−p

)′
, Xt−1 =

(
x′t−1, . . . , x

′
t−p

)′
, Γ = (vec(Φ0)

′, . . . , vec(Φp)
′, vech(Σν)

′)′ and

Σν = Θ̃Θ̃′. The GMM estimator Γ̂T based on moment conditions (19) corresponds to the estimator
of the reduced-form parameters associated with the VAR.

Next, the estimation procedure is based on estimating the structural form (1). Consider the
vector of moment conditions that depend only on the third-order cross-cumulants of the statistical
innovations. The moment conditions are given by

E[g2(Zt, Γ̂T , β)] = E[g2(ut(Γ̂), β)] = E[vecht(C3(ut(Γ̂T )))− vecht(QC3
ϵ (Q⊗Q)′)] = 0, (20)

where β = (vec(Qr)
′, C3

1,1,1, . . . , C3
r,r,r)

′, subject to the constraint Q′
rQr = I, and ut(Γ) = θ̃−1(xt −

Φ0 −
∑p

τ=1Φτxt−τ ). The operator vecht(·) represents the vectorization of the distinct elements of
the corresponding matrix. These moment conditions depend on the parameter vector Γ through
ut(Γ).

The constrained GMM estimator of the structural parameter vector β is given by solving the
following problem:

β̂T = argmin ḡ2T (Zt, Γ̂T , β)
′W2T ḡ2T (Zt, Γ̂T , β),

where ḡ2T (Zt, Γ̂T , β) =
1
T

∑T
t=1 g2(Zt, Γ̂T , β), subject to the constraint Q′

rQr = I, and where W2T

may depend on the data.
This problem can be transformed into an unconstrained minimization problem using the Cayley

transform of an orthogonal matrix (see Golub and Van Loan (2013), Yamada and Ezaki (2003) and
Gouriéroux et al. (2017)). For Qr an orthogonal matrix that does not have −1 as an eigenvalue,
we define:

A = (Qr − I)(Qr + I)−1,

where A is a skew-symmetric matrix, i.e., A′ = −A. This gives a one-to-one mapping:

Qr = (I −A)−1(I +A).
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Therefore, the unconstrained GMM minimizes with respect to the parameter vector
β̃ = (vec(A)′, C3

1,1,1, . . . , C3
r,r,r)

′.
An expansion around the true value π of the second set of moments gives:

1√
T

T∑
t=1

g2(ut(Γ), β) +
T∑
t=1

∂g2
∂Γ′ (ut(Γ), β)

√
T (Γ̂T − Γ) + op(1).

An estimator of the optimal weighting matrix is given by the inverse of a consistent estimator
of the variance-covariance matrix for the following expression:

1√
T

T∑
t=1

g2(ut(Γ), β) +
T∑
t=1

∂g2
∂Γ′ (ut(Γ), β)

√
T (Γ̂T − Γ).

The optimal two-step GMM estimator is obtained using W2T as the inverse of an optimal esti-
mator of the long-run covariance matrix of 1√

T

∑T
t=1 g2(Zt, Γ̂T , β). This long-run covariance matrix

depends on the estimation from the first set of moment conditions (19). Define the optimal long-run
covariance matrix of the entire set of moment conditions ḡT (ZT ,Γ, β) = (ḡ1T (Zt,Γ)

′, ḡ2T (Zt,Γ, β)
′)′

as

lim
T→∞

TE
[
ḡT (Zt,Γ, β)ḡT (Zt,Γ, β)

′] = Ω =

[
Ω11 Ω12

Ω21 Ω22

]
.

Due to the presence of skewness, the covariance matrix between the moment conditions (19)
and (20) is non-zero, i.e., Ω12 ̸= 0.

Define G2,Γ = E ∂g2
∂Γ′ (ut(Γ), β), and by the first-stage VAR estimation:

√
T (Γ̂T − Γ)

d→ N (0, VΓ),

where VΓ is the asymptotic variance-covariance matrix of
√
T (Γ̂T − Γ).

The optimal weighting matrix is then given by an estimator of the inverse of the following
matrix:

S2 = [G2,ΓVΓ Id] Ω [G2,ΓVΓ Id]
′ .

E Rank Test of Identification

The rank condition for identification can be verified based on the number of asymmetric and/or non-
mesokurtic structural shocks. Testing the number of asymmetric and/or non-mesokurtic structural
shocks relies on the reduced-form innovations, which can be evaluated from the reduced form (2)
prior to estimating the structural form (1), as the structural shocks are not directly observable.
Specifically, the number of skewed structural shocks corresponds to the rank of the third-order
cross-cumulant in matrix form C3(ν), denoted rk(C3(ν)) = rs, of the reduced-form innovations,
while the number of non-mesokurtic structural shocks is given by the rank of the fourth-order
cross-cumulant in matrix form C4(ν), denoted rk(C4(ν)) = rk, of the reduced-form innovations.
Finally, the number of structural shocks that are both skewed and non-mesokurtic is given by the
rank of the matrix Ψ(ν) = [C3(ν) C4(ν)].

The ranks of C3(ν), C4(ν), and Ψν allow us to determine the numbers of structural shocks
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displaying exclusively non-zero skewness (denoted rss), excess kurtosis (denoted rkk), and both
(denoted rsk). By noting that rk(Ψν) = rss + rkk + rsk, the number of structural shocks displaying
exclusively non-zero skewness, rss, excess kurtosis, rkk, and both, rsk, can be readily deduced —
given that rs = rss + rsk and rk = rkk + rsk.

Guay (2021) proposed using the rank test of Robin and Smith (2000). Let us define the estimate
of the normalized reduced-form innovations as ût = Ω̂−1ν̂t, where ν̂t represents the OLS residuals of
the reduced form (2), and Ω̂ is a lower triangular matrix obtained from the Cholesky decomposition
of the estimated covariance matrix of the OLS residuals; i.e., Σ̂ν = Ω̂Ω̂′. The rank test uses the
following likelihood-ratio (LR) and Wald (W) statistics:

ĈRT
LR

r∗ = (T − p)
n∑

i=r∗+1

ln(1 + λ̂2
i ), (21)

ĈRT
W

r∗ = (T − p)

n∑
i=r∗+1

λ̂2
i , (22)

where λ̂i are the estimates of the singular values of the matrix C3(ν), C4(ν), or Ψu (with λ̂1 ≥
. . . ≥ λ̂n ≥ 0), and r∗ is the rank of this matrix under the null hypothesis.

Robin and Smith (2000) show that, under certain regularity conditions, the statistics (21) and
(22) have limiting distributions that are weighted sums of independent chi-squared variables. The
main drawback of such tests is that the statistics (21) and (22) are not pivotal. An estimator
of the weights of the sum of the independent chi-squared distribution can be obtained, allowing
for the estimation of asymptotic critical values for the statistics CRTLR

r∗ and CRTW
r∗ under the

null hypothesis that the rank is r∗. However, the finite-sample critical values for testing the null
hypothesis converge very slowly to their asymptotic counterparts, especially in the case of excess
kurtosis (see simulation results in Guay (2021)).

To circumvent this problem, Guay (2021) propose a bootstrap procedure to compute the finite-
sample critical values for the statistics CRTLR

r∗ and CRTW
r∗ associated with the ranks of C3(u),

C4(u), and Ψu.
We illustrate the steps of the procedure for determining the rank of C4(u).

Step 1. Under the null hypothesis that rk[C4(u)] = r∗ (i.e., r∗ is the assumed number of non-

mesokurtic structural shocks), the vector ubt =
(
ub′r∗,t ub′n−r∗,t

)′
is generated as follows. The el-

ements in the (r∗ × 1) subvector ubr∗,t are obtained by bootstrapping the elements in the vector

wr∗,t = Ĉ ′
r∗ ût for t = (p+1), . . . , T , where Ĉr∗ is an (n×r∗) matrix stacking the left singular vectors

associated with the r∗ largest singular values of Ĉ4(u), and ût is the (n × 1) vector of estimated
normalized reduced-form innovations. This implies that the elements in wr∗,t correspond to linear
combinations of the normalized reduced-form innovations that display the largest excess kurtoses.
The elements in the [(n − r∗) × 1] subvector ubn−r∗,t are drawn from a symmetric and mesokurtic

distribution, i.e., ubn−r∗,t ∼ N(0, I) for t = (p+ 1), . . . , T.
Step 2. The bootstrap sample is generated recursively from the VAR process (2) as:

xbt = Γ̂0 +

p∑
τ=1

Γ̂τx
b
t−τ + Ω̂ubt ,
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for t = (p+1), . . . , T . The starting values of xbt for t = 1, . . . , p are generated by randomly drawing
a block of the actual data of length p, while Γ̂0, Γ̂τ , and Ω̂ are the estimates of the reduced-form
parameters obtained via OLS on the actual sample. These estimates are treated as the population
values of the reduced-form parameters.
Step 3. The VAR process is then estimated, yielding:

xbt = Γ̂b
0 +

p∑
τ=1

Γ̂b
τx

b
t−τ + Ω̂bûbt ,

where Γ̂b
0, Γ̂

b
τ , and Ω̂b are the estimates obtained by performing OLS on the bootstrap sample, and

ûbt corresponds to the normalized residuals.
Step 4. The normalized residuals ûbt are used to compute the bootstrap analogues of the statistics
(21) and (22).
Step 5. Steps 1 to 4 are repeated for b = 1, . . . , B, where B = 2000, to compute the empirical
distributions of the statistics (21) and (22). Selecting the appropriate quantiles of these empirical
distributions yields the finite-sample critical values to test the null hypothesis that the rank is r∗

against the alternative that the rank is larger than r∗.
Step 6. Steps 1 to 5 are repeated for r∗ = 0, 1, . . . , n − 1. If the null hypothesis rk[C4(u)] = r∗

is rejected for r∗ = 0, 1, . . . ,m − 1 but not rejected for r∗ = m with m < n, then the number
of non-mesokurtic structural shocks is rk = m. However, if the null hypothesis rk[C4(u)] = r∗ is
rejected for r∗ = 0, 1, . . . , n− 1, then rk = n.

F Simulations of the Rank Test Using the Second Application as
the DGP

We investigate the finite sample properties of the identification rank test using the data-generating
process (DGP) specified in the second application. The DGP is simulated based on parameter
estimates from the reduced-form VAR model, with a sample size of 716 observations and nine
lags in the VAR. We then apply the bootstrap procedure as previously described. The estimated
variance-covariance matrix is decomposed using the Cholesky method, i.e., Σ̂ν = Ω̂Ω̂′, and the
normalized errors ubt are generated according to the distributions specified below. The number of
simulations is set to 10,000 draws, with the number of bootstrap replications fixed at B = 2000.

First, we examine the properties of the test under the null hypothesis of Gaussianity. For this,
the 4× 1 vector ut is drawn from a multivariate normal distribution, N (0, I4).

Second, as a deviation from Gaussianity, we consider a skewed-t distribution. The skewed-t
distribution is a generalization of the Student’s t-distribution that incorporates skewness, allowing
it to model asymmetric data with heavier tails, as observed in the application. We examine three
cases based on the degree of skewness and excess kurtosis:

• Case 1: The most substantial deviation from Gaussianity, with a skewness of -1 and an
excess kurtosis of 6.

• Case 2: An intermediate deviation, with a skewness of -0.75 and an excess kurtosis of 2.

• Case 3: A mild deviation, with a skewness of -0.5 and an excess kurtosis of 0.75.
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Under the null hypothesis, when r∗ = 0, the 4×1 vector ut is drawn entirely from a multivariate
normal distribution, N (0, I4).

When r∗ ̸= 0, still under the null hypothesis, an r∗-dimensional subvector of ut is drawn from
one of the three skewed-t cases specified above, while the remaining (4 − r∗) elements are drawn
from a N (0, I4−r∗) distribution.

Under the alternative hypothesis, an (r∗ + 1)-dimensional subvector of ut is drawn from one
of the three skewed-t cases specified above, while the remaining (4− (r∗ + 1)) elements are drawn
from a N (0, I4−(r∗+1)) distribution.

Table F.1 reports the empirical sizes for finite-sample distributions, where the critical values
are derived from the bootstrap procedure described above. First, under the null hypothesis, when
r∗ = 0, the entries are identical across all three cases, as the vector ut is drawn entirely from a
multivariate normal distribution, N (0, I4), in each scenario.

Importantly, both the Wald and likelihood-ratio tests exhibit minimal size distortions: the
empirical sizes closely align with the nominal sizes for all values of r∗, with only a slight tendency
toward overrejection, primarily at higher values of r∗ and, unexpectedly, in the case with low
skewness and excess kurtosis.

As anticipated, the power of the tests increases substantially with higher levels of skewness and
excess kurtosis. In the first two scenarios, the rejection rate exceeds 80% for most alternatives.
However, in cases with low skewness and low excess kurtosis, the analysis tends to be less conser-
vative. This implies that an analyst is more likely to mistakenly conclude that the entire system is
under-identified (even when it is actually identified) or to underestimate the size of the identified
subsystem (even when the system is only partially under-identified).

Overall, our bootstrap procedure for rank tests effectively mitigates size distortions and demon-
strates good power properties for the sample size used in the second application.
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Table F.1. Empirical Sizes and Power of Rank Tests: Kurtosis

Finite-Sample Distributions

Case 1

Under the Null Hypothesis Under the Alternative Hypothesis
Wald LR Wald LR

r∗ 10% 5% 1% 10% 5% 1% r∗ + 1 10% 5% 1% 10% 5% 1%
0 10.62 5.34 1.16 10.54 5.30 1.19 1 96.12 93.74 87.67 95.30 92.53 84.98
1 10.77 5.75 1.34 10.70 5.74 1.34 2 94.99 91.95 83.25 94.14 90.86 80.39
2 10.62 5.50 1.32 10.65 5.45 1.29 3 95.40 92.33 82.46 94.93 91.62 80.98
3 10.59 5.41 1.53 10.59 5.41 1.53 4 97.03 94.73 85.28 97.03 94.73 85.28

Case 2

Under the Null Hypothesis Under the Alternative Hypothesis
Wald LR Wald LR

r∗ 10% 5% 1% 10% 5% 1% r∗ + 1 10% 5% 1% 10% 5% 1%
0 10.62 5.34 1.16 10.54 5.30 1.19 1 86.84 81.14 68.14 85.22 78.70 64.08
1 10.37 5.25 1.15 10.32 5.26 1.18 2 83.67 76.32 58.80 82.49 74.10 54.94
2 10.58 5.72 1.58 10.60 5.70 1.51 3 83.46 75.21 55.58 82.60 73.89 53.33
3 10.96 5.98 1.70 10.96 5.98 1.70 4 88.30 81.16 62.14 88.30 81.16 62.14

Case 3

Under the Null Hypothesis Under the Alternative Hypothesis
Wald LR Wald LR

r∗ 10% 5% 1% 10% 5% 1% r∗ + 1 10% 5% 1% 10% 5% 1%
0 10.62 5.34 1.16 10.54 5.30 1.19 1 57.95 46.92 29.23 55.86 44.84 26.65
1 11.12 5.75 1.24 11.07 5.77 1.30 2 51.81 38.87 19.05 50.49 36.87 17.33
2 11.66 6.66 1.78 11.57 6.66 1.74 3 49.49 36.53 17.14 48.88 35.67 16.21
3 12.25 6.94 2.16 12.25 6.94 2.16 4 53.46 40.57 20.19 53.46 40.57 20.19

Notes: The entries represent the empirical sizes and power (in percentage) of the rank tests under the null hypothesis

that rk[C4
u] = r∗ and the alternative that rk[C4

u] = r∗ + 1. For each parametrization, 10,000 simulated samples of

size T are generated to compute the proportion of times that the Wald statistic, ĈRT
W

r∗ , and the likelihood-ratio

(LR) statistic, ĈRT
LR

r∗ , exceed the bootstrapped critical values, following the procedure described above.
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