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Abstract

Standard time varying parameter (TVP) models usually assume independent stochastic pro-

cesses for all TVPs. In this paper, I show that the number of underlying sources of parameters’

time variation is likely to be small, and provide empirical evidence for factor structure among

TVPs of popular macroeconomic models. To test for the presence of, and estimate low di-

mension sources of time variation in parameters, I develop the factor time varying parameter

(Factor-TVP) framework and apply it to Primiceri (2005) monetary TVP-VAR model. I find

that one factor explains most of the variability in VAR coefficients, while the stochastic volatil-

ity parameters vary independently. Including post-“Great Recession” data causes an important

change within VAR coefficients and the procedure suggests two factors. The roots of variability

in the VAR parameters are likely to come from the financial markets and the real sector. The

TVP factors have predictive power for a large number of output, investment and employment

series as well as for the term structure of interest rates.
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1 Introduction

It is likely that the behavior of economic agents and environment vary over time: monetary policy

authority changes its strategy, economic shocks become more or less volatile, etc. This implies time

instability in potentially all parameters in reduced-form representations of structural models. For

instance, Fernandez-Villaverde and Rubio-Ramirez (2008) find that some parameters in dynamic

stochastic general equilibrium (DSGE) models are time-varying. Using empirical univariate and

bivariate autoregressive models, Stock and Watson (1996) find widespread instability in a large

number of U.S. macroeconomic series. In addition, several studies, while investigating the causes of

the Great Moderation, have assumed or tested structural changes such as shifts in monetary policy

rule parameters and/or time changes in volatility of shocks (see Boivin and Giannoni (2006), and

Stock and Watson (2002, 2003), among others). The time-varying parameter VAR models (TVP-

VAR hereafter) were also used by Cogley and Sargent (2005), Boivin (2005), Primiceri (2005)

and Sims and Zha (2006) to investigate the time instability of policy functions and the stochastic

volatility of structural shocks. On the other hand, a number of studies using DSGE models assumed

some of the structural parameters to be time-varying and/or impose stochastic volatilities [see e.g.

Justiniano and Primiceri (2008), Fernandez-Villaverde et al. (2010) and Ravenna (2010)]. Finally,

Inoue and Rossi (2011) used a sequential testing procedure to identify which structural parameters

in both VAR and DSGE models are time-varying.

Most of the studies using reduced-form models assumed the same number of sources of time

variations as the number of time-varying parameters. Due to the computational difficulty, inde-

pendent stochastic processes are imposed for all coefficients.1 However, it is likely that this time

variability presents commonalities. The intuition is that only a small number of structural rela-

tionships vary over time, inducing instability in all coefficients of reduced-form models, where the

correlation structure between TVPs is mainly explained by the common component. An excep-

tion is Cogley and Sargent (2005) who find that main time instability within the VAR coefficients

can be explained by only a few components. In addition, Canova and Ciccarelli (2009) impose a

reduced-rank time variation within the estimation of a multicountry panel VAR while Carriero,

Clark and Marcellino (2012) impose common factor stochastic volatility in a large Bayesian VAR.

In this paper, I provide new evidence that the number of common sources of parameters time

variation in widely-used empirical macroeconomic models is very small. There are several contri-

butions to the literature. I first show that parameters instability in the structural model is likely

to imply time variation in all (or at least a subset of) coefficients in the reduced-form model. This

is explicitly demonstrated for structural VARs, and VAR(MA) representations of DSGE models. I

1Primiceri (2005) relaxes this hypothesis by letting some VAR time-varying coefficients have correlated error terms.
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demonstrate how the factor representation of time-varying parameters can be obtained, and present

the factor time varying parameter model (Factor-TVP) that takes into account the commonalities

within the coefficients. From a practical point of view, the main advantages of the model are: the

correlation structure between the TVPs is unrestricted, and only a small number of states must be

filtered. The approach is applied to a standard 3-variable VAR model from Primiceri (2005), and

to a factor-augmented VAR (FAVAR) model from Boivin, Giannoni, and Stevanovic (2013).

The first objective is to detect the presence of the factor structure, and test its dimensionality

in time-varying VAR coefficients, keeping the volatility of shocks constant. Performing the two-step

recursive and likelihood-based procedures, I find that a small number of common shocks explain the

most of instability in VAR coefficients. Then, the Factor-TVP model with one latent component is

estimated by maximum likelihood. The underlying factor is very persistent, which is in line with

the strong collinearity in TVPs found after the first stage estimation in the two-step likelihood

procedure. Moreover, it is highly correlated with the unemployment rate, and moderately related

to inflation and interest rate.

When applied to TVP-VAR model with stochastic volatility from Primiceri (2005), the vari-

ability in VAR coefficients is mostly explained by only one factor, while the stochastic volatility

part is explained by two additional factors. In particular, when the structural version of the VAR

model is obtained by the Choleski decomposition of the residuals time-varying covariance matrix,

I find that the contemporaneous relations coefficients are explained by the second factor, while the

variances of structural shocks are explained by the third factor.

I repeat the same exercise with the data updated to 2013Q4. The idea of using the Factor-

TVP model is to capture common breaks, and the recent financial crisis is a good example of such

an episode. Indeed, the tests suggest one more factor, and their interpretation is changed. The

estimated TVPs present an important behavioral change after 2007, indicating the presence of a

structural break. The correlation structure between factors and observable variables is such that

the first factor is highly positively correlated to the inflation rate, and moderately related to the

interest and unemployment rates. The second factor presents a similar pattern, but with correlation

coefficients around 0.3. Contrary to pre-crisis data, a majority of TVPs are largely explained by

the factors. In particular, the inflation equation coefficients seem to be time-varying with the two

factors, and this is also the case for about half of parameters in other VAR equations.

To improve on the interpretation of TVP factors and to understand more deeply their roots and

implications for empirical research, I face them against a large macroeconomic panel containing 141

time series. The findings are following: (i) the roots of variability in the VAR parameters come

from the financial markets and from the real sector of economic activity, (ii) the TVP factors are

Granger-caused by the macroeconomic fundamentals, as estimated by static factors from the large
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data set, (iii) the TVP factors have significant predictive power, beyond the information contained

in data factors, for a great number of output, investment and employment series as well as for term

structure of interest rates, (iv) this predictive content increases with the forecasting horizon. This

evidence suggests that more attention should be given to the link between the financial and real

sectors of economy within structural models.2

To complete the empirical exercise, the time-varying FAVAR model is estimated by the two-step

recursive procedure. I find that four dynamic factors explain most of the commonalities between

almost 700 TVPs. Again, the stochastic volatility coefficients’ instability seems to have different

common factors than the regression parameters. In the rest of the paper, I first provide examples

of common sources of parameters’ instability in macroeconomic models. Section 3 shows how the

factor representation of time-varying parameters process is obtained, and the Section 4 presents

the Factor-TVP model. The main results are presented in Section 5 and Section 6 concludes.

2 Examples of reduced-rank parameters instability

In the following, I show two examples where the low number of common sources of parameter insta-

bility is a plausible hypothesis. The intuition is that only a small number of structural relationships

vary over time, which implies that possibly all the coefficients in reduced-form models are unstable.

2.1 Vector autoregressive models

Suppose the two-dimensional stochastic process Yt = (y1t y2t)
′ has a structural VAR(1) represen-

tation: [
a0,11 0

a0,21 a0,22

][
y1,t

y2,t

]
=

[
a1,11 a1,12

a1,21 a1,22

][
y1,t−1

y2,t−1

]
+

[
ε1,t

ε2,t

]
with V (εt) = I. Then, the reduced-form representation is:

[
y1,t

y2,t

]
=

[
a1,11
a0,11

a1,12
a0,11

a1,21
a0,21

− a0,21a1,11
a0,11a0,22

a1,22
a0,22

− a0,21a1,12
a0,11a0,22

][
y1,t−1

y2,t−1

]
+

[
1

a0,11
0

− a0,21
a0,11a0,22

1
a0,22

][
ε1,t

ε2,t

]

or in matrix notation

Yt = BYt−1 + ut

2In fact, Philippon (2012) provides evidence on the growing importance and the cost of financial intermediation
in the U.S. in the last 130 years. Barattieri, Eden and Stevanovic (2014) suggest that the increase in financial sector
interconnectedness (a decrease of direct connectedness with the real sector) may have dampened the sensitivity of
the real variables to monetary shocks. There is also a growing literature on shadow banking and its impact on real
economy, see Poszar et al. (2012).
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with

V (ut) = Ω =

 1
(a0,11)2

−

− a0,21
a0,11a0,22

1
a0,22

+
(a0,21)2

(a0,11)2(a0,22)2


Let a0,11 be time varying, i.e. at0,11 ∼ G where G is some distribution. Then, all reduced-form

coefficients in B and Ω are time varying such that:

• Distributions of reduced form parameters depend in generally nonlinear way on distribution

of time-varying structural parameters.

• Variability of elements in Bt and Ωt is of reduced-rank.

• All the correlation structure between the elements of Bt and Ωt is explained by the time-

varying parameters in structural form.

⇒ All these point to a (non)linear factor structure.

2.2 General equilibrium models

It is well known that the linearized solution of a DSGE model has a vector-autoregressive moving-

average (VARMA) form in endogenous variables (see Fernandez-Villaverde et al. (2007) and

Ravenna (2007)), but the coefficients of the corresponding VARMA model are nonlinear combi-

nations of parameters in the structural model. As such, the parameters instability in the structural

model is likely to imply time variation in all coefficients of the VARMA representations. The ev-

idence on time-varying parameters in macroeconomic general equilibrium models is growing, see

Fernandez-Villaverde and Rubio-Ramirez (2008) and Inoue and Rossi (2011). In the following, I

show how this may happen in a simple general equilibrium model.

Consider a forward-looking model with backward component

πt =
β

1 + αβ
Et(πt+1) +

α

1 + αβ
πt−1 + κyt + επ,t (1)

yt = γEt(yt+1) + (1− γ)yt−1 −
1

σ
(Rt − Et(πt+1)) + εy,t (2)

Rt = ρRt−1 + (1− ρ)(φππt + φyyt) + εR,t (3)

εi,t = ρiεi,t−1 + εi,t (4)

with εi,t ∼ N(0, σ2i ), i = π, y,R. This model has a general solution:

gt = G1gt−1 + Cεt (5)
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where gt = [Rt, πt, yt, ξ
π
t , ξ

y
t , eR,t, eπ,t, ey,t]

′, ξπt ≡ Et(πt+1), ξ
y
t ≡ Et(yt+1), εt = [εR,t, επ,t, εy,t]

′, G1 is

8× 8 and C is the 8× 3 impact matrix.

Let Xt = [Rt, πt, yt]
′, Ξt = [ξπt , ξ

y
t ]′ and εt = [εR,t, επ,t, εy,t]

′. Then we can rewrite (5)3

 A11 (L) A12 (L) A13 (L)

A21 (L) A22 (L) A11 (L)

A31 (L) A32 (L) A33 (L)


 Xt

Ξt

εt

 =

 C11

C21

C31


 εR,t

επ,t

εy,t


From the third system of equations in previous representation, assume A31(L) and A32(L) are zero

and solve for εt to get

εt = A33(L)−1C31εt. (6)

Solve for Ξt in the second system and replace for et using (6)

Ξt = −A22(L)−1A21(L)Xt −A22(L)−1A23(L)A33(L)−1C31εt +A22(L)−1C21εt. (7)

Finally, solve for Xt and use (6-7) to get

[A11(L)−A12(L)A22(L)−1A21(L)]Xt = [C11 +A12(L)A22(L)−1A23(L)A33(L)−1C31 −A13(L)A22(L)−1C31

−A12(L)A22(L)−1C21]εt. (8)

Note that this VARMA(∞,∞) process can be written in a finite order VARMA(p,q) representation

by observing that Aij(L)−1 =
adjoint(Aij(L))
det(Aij(L))

. Since the coefficients in A(L) are nonlinear combina-

tions of the structural parameters, if q of them are unstable then all elements of A(L) are time

varying but with only q sources of variability.

These examples have an important implication for the counterfactual analysis that is widely

used in the empirical macroeconomic literature. It usually consists of combining the coefficients of

reduced-form model from one regime with those from the second regime. However, a single regime

change in the structural model may imply time variation and/or stochastic volatility in all the

coefficients of the reduced-form representation, even in the structural VAR. Moreover, the mapping

to the structural instability is probably highly nonlinear. Hence, there is no reason that one time

change in some structural parameters in a particular equation corresponds to one time change in

the corresponding VAR equation coefficients. Thus, supposing this correspondence to be true can

be very misleading and makes the resulting counterfactual inappropriate.

3Generally A31(L) and A32(L) are zero, while the coefficients in A12(L) are all zero only in determinacy case.

6



3 Factor representation of time-varying parameters’ process

3.1 Linear approximation

Let αt be a q-dimensional vector of time-varying parameters in the structural model, whose dynamic

process is characterized by some distribution G. Let βt be a K-dimensional vector of (potentially

all) time-varying reduced-form coefficients such that

βt = F(αt; γ) (9)

where γ is a vector of m constant coefficients, and F is some functional form that links reduced-form

to structural parameters.

In general, βt is a nonlinear function of structural parameters. If the number of TVPs in the

structural model is less than the number of coefficients in βt, i.e. q < k, then rank(Σ) = q,

Σ = V(βt). Suppose that function F in (9) is twice continuously differentiable, then by Taylor’s

theorem

βt = L(βt) + error (10)

where L(βt) is the linear approximation of βt around ᾱ:

L(βt) = F(ᾱ; γ) + F ′(ᾱ; γ)(αt − ᾱ).

Defining µ = F(ᾱ; γ), λ = F ′(ᾱ; γ), ft = (αt − ᾱ) and et as the approximation error, we have the

following factor structure:

βt − µ = λft + et (11)

If βt is demeaned, then µ = 0 and we obtain the usual factor model:

βt = λft + et

with ft ∼ Ḡ, where Ḡ is the distribution of (αt − ᾱ), and with dispersion matrices D(et) = Ψ and

D(ft) = Φ and

D(βt) = λΦλ′ + Ψ

with Ψ diagonal and at least q2 identifying restrictions.
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3.2 Dimension reduction

Another way to motivate the factor representation of time-varying parameters is the dimension

reduction argument. Since the standard estimation methods are computationally cumbersome

when the number of TVPs is large, it may be of practical interest to reduce the dimensionality

problem by imposing the factor structure. As in standard applications of principal component

analysis, the idea is to approximate a large number of TVPs by few factors. Suppose we wish to

replace the K-dimensional random variable βt with its q, q < K, linear functions without much loss

of information. How are the best q linear function to be chosen? It can be restated as a nonlinear

least square problem

βit = (B′1βt)δi1 + . . .+ (B′Kβt)δiK + eit, i = 1, . . . ,K, t = 1, . . . , T. (12)

Rao (1973) shows that B′βt should be constructed as the first q principal components of βt. Hence,

rewriting (12) in matrix form and defining A = δ, and F = B′β, we get the linear factor represen-

tation:

β = AF + e.

4 Econometric framework

4.1 Factor-TVP model

The simplest example to illustrate the method is the linear TVP regression:

yt = x′tβt + wt (13)

where yt is a scalar, xt is a K × 1 vector of explanatory variables, βt contains K time-varying

parameters and wt is a homoscedastic white noise with V(wt) = R. There are several ways to specify

the time variation of βt: discrete or stochastic breaks, stochastic continuous processes (random

walk and ARIMA). In standard applications of TVP models in macroeconomics, βt is usually

modeled either as a Markov switching process, which includes discrete break as special case, or as

a collection of univariate AR(1) processes, which embodies the random walk if the autoregressive

coefficient is fixed to unity. Here, we concentrate only on continuous stochastic processes of βt.
4

Following intuition from the previous section, the link between βt and its underlying factors may

be approximated as a linear factor model:

4Nyblom(1989) pointed out that both discrete break and random walk models are martingale processes and are
special cases of βt = βt−1 + ωt, with E(ωt) = 0. Moreover, the continuous TVP model is then an approximation of
the discrete break model.
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βt = λft + et (14)

ft = ρft−1 + vt (15)

where ft is a (q×1) vector of latent factors, λ is a (K×q) matrix of factor loadings, ρ is such that ft

is stationary of martingale, et and vt are white noise processes with E(ete
′
t) = M and E(vtv

′
t) = Q.

Finally, it is assumed that wt, et, and vt are uncorrelated.

To summarize, the Factor-TVP model is given by the following expressions:

yt = x′tβt + wt (16)

βt = λβt−1 + et (17)

ft+1 = ρft + vt+1 (18)

4.2 Identification

As written above, the Factor-TVP model is not identified. Suppose that λ̃ and f̃t are a solution

to the estimation problem. However, this solution is not unique since we could define λ̂ = λ̃H and

f̂t = H−1f̃t, where H is a q× q nonsingular matrix, which could also satisfy the model’s equations.

Then, observing yt and xt is not enough to distinguish between these two solutions, and a set of

normalization restrictions is necessary.

There are several ways to achieve identification in the factor model. Recall that we have to

impose q2 restrictions. In principal component analysis, this is done by rotating factors such that

they are orthogonal and with unit variance. This gives q(q + 1)/2 restrictions. The remaining

restrictions are obtained by assuming that λ′λ is diagonal.

However, this does not remove the indeterminacy associated with rotation, orthogonal trans-

formation, or sign changes of ft. The main criticism to this normalization is that the factors are

not interpretable. If the objective is to estimate the space spanned by factors and then use this

information to improve forecasting of observable series, this normalization is adequate. However,

as pointed out in Yalcin and Amemiya (2001), if one is interested in a causal use of factor analysis,

this parametrization can be problematic.

Another parametrization of (17) is the errors-in-variable representation. The identification is

achieved by imposing a (q × q) identity matrix on q rows of λ:

λ̃ =

[
I

λ

]
.

9



This is equivalent to re-write (18) as

β1,t = ft + e1,t

β2,t = λft + e2,t

which implies that ft is measured with error by q elements of β1,t.

The main advantage of the errors-in-variable representation is that only q2 loadings are restricted

while the factors distribution is left unrestricted. This can be of interest if the research goal is to

study the causal relation between factors and time-varying parameters. For example, if one seeks

to learn where the instability in VAR parameters is coming from, it is important to not restrict

the factors distribution. However, the major problem with this parametrization is that one must

arbitrarily choose which q time-varying parameters belong to β1,t.

4.3 Estimation

The strength of the Factor-TVP model is that instead of filtering and tracking K + N(N + 1)/2

states, we only need to filter q states, and q is generally much less than K+N(N+1)/2. Moreover,

much less covariance coefficients must be estimated. Consider an N -dimensional TVP-VAR(1)

model with stochastic volatilities. If no factor structure is imposed one must filter N +N(N + 1)/2

states, but also estimate the same number of TVP variances. This is the most enthusiastic case

in which all coefficients are modeled as random walks with a diagonal covariance matrix. If one is

interested in more flexible specifications the number of parameters to estimate will explode.

On the other hand, imposing a factor structure allows for any type of correlation between TVPs,

while keeping the dimensionality of the estimation problem relatively low. The number of TVP

covariance elements to be estimated is at most q(q + 1)/2, but the number of factor loadings is at

most (N+N(N+1)/2)q in case of orthogonal factors and (N+N(N+1)/2)q−q2 if errors-in-variable

representation.

In this paper, I consider three estimation procedures. The first consists of complete character-

ization of the system (16)-(18) in a parametric world and simultaneous estimation of the system

using a likelihood-based method. In addition to elements of βt, it is possible to estimate the

stochastic volatility so that the covariance matrix of residuals in (16) is heteroskedastic. If no

stochastic volatility, and if the number of parameters is not too large, the model can be estimated

by ML where the likelihood is calculated using the Kalman filter. Otherwise, Bayesian methods

are needed5.

5An ongoing research project is studying the estimation of the Factor-TVP-VAR model with stochastic volatility
within the Bayesian framework, see Amir-Ahmadi and Stevanovic (2015).
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Instead of the simultaneous parametric methodology, one can estimate (16)-(18) by recursive

least squares. On one hand, the recursive methods may be inefficient if the true restrictions are not

explicitly imposed and the estimates may contain a large sampling error, but they are more robust

to misspecification.6 Also, they are computationally easy to apply contrary to the simultaneous

likelihood methods that are often numerically unstable. The procedure works in two steps:

Step 1: Estimate TVPs by recursive procedure with rolling or expanding window.

Step 2: Perform factor analysis on estimated TVPs.

In the first step, several choices must be made: size of the time window, rolling or expanding

window. Then, once we have the set of estimated TVPs, an appropriate factor analysis must be

applied: dynamic or static factor model, the number of factors, identification and the estimation

method (principal components or MLE).

Finally, the third method combines the two previous procedures. In the first step, the TVPs

are estimated within the standard TVP framework without imposing the factor structure, and

then the factor model is fitted on estimated TVPs. According to simulation results presented in

following section, this method provides accurate estimates of the number of common shocks, and

of the factors’ dynamic process, but is naturally less efficient than the first method since the true

restrictions are not imposed.

4.3.1 Estimation of the number of factors

The most difficult part in the factor analysis is to test for the number of factors. I will use scree

tests, i.e. plot eigenvalues of the correlation matrix of data; trace test, to see the percentage of

variance explained by factors; Bai and Ng (2007) test for the number of dynamic factors, Horn

(1965) parallel tests and Velicer (1976) MAP test.7 As pointed out in Velicer at al. (2000), the

scree test is good as an adjunct method since it is not a statistical procedure and the trace test

is not recommended since it is not robust to the presence of irrelevant components.8 The parallel

test, that is in fact a simulation-based Monte Carlo test, is one of the most recommended but it

is computationally difficult if there is a large number of TVPs. The MAP test (Velicer (1976) and

Velicer et al. (2000)) is also a widely-used test in psychometric applications of factor analysis, but

6The results in Stock and Watson (1996) suggest that time-varying models have limited success in exploiting this
instability to improve upon fixed-parameter or recursive autoregressive forecasts. In addition, Edlund and Søgaards
(1993) find that recursive methods are useful to model business cycles in the context of time-varying parameters.

7Given the sample size and sampling error when TVPs are estimated, I do not report results from Bai and Ng
(2002) for number of static factors since these performed quite poorly in simulations. This was expected since the
cross-section size is small while Bai and Ng (2002) information criteria asymptotics require a large number of elements.

8Adding irrelevant series to a data set constructed from factor model will decrease the trace ratio. This is important
to note since we do not know a priori how many parameters are time varying due to common shocks.
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it tends to overestimate the number of factors (especially in simulations where a lot of sampling

error is present). Finally, likelihood ratio tests are known to overestimate the number of factors.

4.4 Simulations

In this section I check the performance of estimation procedures in simulations. Several Factor-

TVP models are considered. No stochastic volatility is assumed so only regression coefficients are

time varying.

• Model 1: Univariate Factor-TVP Regression

yt = x′tβt + wt (19)

βt = λft + σβet (20)

ft+1 = ρft + vt+1 (21)

where yt is a scalar, xt is (K × 1) and ft contains q elements. The error terms are all drawn

independently from a standardized Normal distribution. σβ is the variance of et, and in

particular when it is equal to 0, we have a case where the time-varying parameters are exact

linear combinations of underlying common shocks. Note that xt includes the constant.

• Model 2: Multivariate Factor-TVP Regression

yt = ct + btxt + wt

where yt is (N × 1) and xt contains K independent variables. Let Xt = IN ⊗ [1, x′t] and

βt = [vec(ct)
′, vec(bt)

′]′ contains all the K(N + 1) time-varying coefficients. Then the

Factor-TVP is

yt = X ′tβt + wt (22)

with (20)-(21) describing the TVPs dynamics.

• Model 3: Factor-TVP VAR

I consider only VAR(1) specification since it is always possible to rewrite the VAR(p) in its

companion form:

yt = ct + btyt−1 + wt.

The Factor-TVP representation is the same as in the previous multivariate case, but the

number of elements in βt is N(N + 1).9

9The simulation of TVP-VAR model is tricky. To avoid explosive roots, for each t, I decompose bt using singular
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The simulations results are presented in Table 1. I generate quite persistent movements in βt by

fixing factors autoregressive coefficients close to one. The objective is to mimic potential structural

breaks in economy that are likely to be discrete or slow moving. The two-step rolling OLS method

performs quite well to detect the presence of commonalities within TVPs.10 It tends to overestimate

the number of factors in case of multivariate models. The intuition is that the first principal

component is extracted such that the maximal amount of variance in θ̂t is explained while the

recursive estimation of coefficients introduces some sampling uncertainty and increases artificially

the variability in TVPs. As the number of factors augments, Parallel tests tend to pick the true

value of q, while Bai-Ng specifications may even underestimate it. The persistence in dynamic

process of ft is usually overestimated while the estimated factor explains a sizeable proportion of

variation in the true factor. Hence, this method seems to be a good starting point to check for the

presence of a factor structure on TVPs. This is important in practice given the complexity and

sensitivity of standard time-varying parameter estimation procedures.

The two-step MLE method, where the first step consists of a standard TVP model (without

factor structure), produce accurate estimates of q. In addition, the MLE factors span reasonably

well the space generated by the true factors, both in terms of R2 and root mean squared error

(RMSE). However, it tends to overestimate the persistence in factors dynamics and underestimate

their variance. Naturally, the simultaneous MLE of Factor-TVP gives the best results since the true

restrictions are imposed. In particular, it produces lowest RMSE for time-varying parameters and

factor loadings, and approximates the best the underlying factors. However, note that the maximum

likelihood estimation works well in case of low-dimension systems, but it becomes difficult when the

number of time-varying parameters is large. In that case, the good initial values for factor loadings

are needed.

The bottom line of this simulation experiment is that the simple two-step recursive least square

method is a very good starting point to investigate for the presence of commonalities within the

time-varying parameters in linear regression and VAR models. A better estimate of the correct

number of factors seems to be obtained by applying factor analysis tools on MLE TVPs from the

standard TVP model, but there is an initial cost in terms of specification and numerical estimation

of the model. Finally, once we have a good idea on the number of common components, all the

Factor-TVP coefficients and states should be simultaneously estimated using Kalman filter. I will

use exactly the same ordering in the application presented in the next section.

value decomposition and check if the eigenvalues of bt are inside the unit circle. If not, I scale them such that they
are less than one and reproduce the corresponding coefficient matrix.

10I report the results for rolling window only. The results with expanding window are virtually the same.
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5 Empirical evidence on common sources of parameters instability

In this section, I produce new empirical evidence for the existence of low-dimension common sources

of parameters instability in various reduced-form models widely used in macroeconomics. A 3-

variable TVP-VAR model from Primiceri (2005) is estimated using the three methods discussed

above.

5.1 TVP-VAR model

The VAR model contains the annual growth rate of GDP price index, unemployment rate, and

3-month Treasury bill. The data used are quarterly and cover the 1953Q1-2006Q4 period. The

lag order is fixed at 2, so the total number of time-varying parameters is 27 (3 constants, 18 VAR

coefficients plus 6 covariances). Following notation in Primiceri (2005), the model is

yt = ct +B1,tyt−1 +B2,tyt−2 +A−10,tΣtεt, (23)

where A−10,t is lower triangular with unit diagonal, and Σt is diagonal. Let xt = In ⊗ [1, y′t−1, y
′
t−2],

βt = [c′t vec(B′1,t) vec(B′2,t)]
′, and Pt = A−10,tΣt.

11 Then, the model (23) can be written as in (13)

with Rt = PtP
′
t . Let αt be a vector of lower triangular random elements in A−10,t , and σt contains

diagonal elements of Σt. The Factor-TVP representation is

yt = x′tβt + Ptεt (24) βt

αt

log σt

 = λft + et (25)

ft = ρft−1 + vt (26)

A number of studies have documented instabilities within this type of US monetary VAR,

see relevant references in Primiceri (2005). At the same time, several researchers have identified

changes in some coefficients of Taylor rule approximations of monetary policy. For instance, Boivin

(2005) find, in the context of forward-looking Taylor rule with drifting coefficients, that the Federal

Reserve’s response to expected inflation was strong before 1973 and after 1980, while the response

to real activity forecasts have decreased during seventies. Using a a quadratic term structure model

where the short rate follows a Taylor rule with drifting parameters, Ang et al. (2011) find that the

response to inflation have changed substantially over all post-war period, not only under Volcker,

11Let dt be diagonal matrix containing diagonal elements of Pt. Then, A−1
0,t = Ptd

−1
t and Σt = dt.
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while the coefficient on output gap presents only small instability over time.

Hence, on one hand we find evidence on instabilities in VAR parameters and stochastic volatil-

ities, and on the other hand literature have identified a small number of structural changes within

the monetary policy rule. Suppose that in the theoretical DSGE model the monetary rule changes

over time such that parameters on future or past inflation and output are drifting, potentially all

coefficients in the VAR representation of observables could be time varying. But the sources of

these variations are only few. Thus, commonalities within TVPs of the VAR should be observed.

My objective here is precisely to verify this conjecture empirically.

5.1.1 Detecting common parameters’ instability

Two-step recursive method As a starting point, I estimate the time-varying parameters and

the underlying common sources of instability using the two-step recursive procedure discussed

above. Although this method is not the most efficient, the simulation evidence showed that it is

able to detect the low-rank variability in TVPs. Due to sampling errors, it tends to suggest more

factors than the true number, but it gives a good initial guess and provides starting points for the

likelihood-based method. In the first step, I estimate TVPs by recursive OLS where the window is

fixed to 10 years.12

A necessary condition for factorability is that θt presents enough correlation. In this exercise,

more than 58% of unique elements in the correlation matrix of θt are higher than 0.5, showing that

the correlation structure is strong enough to lead to a factor structure. The scree and trace tests

are presented in Figure 1. The scree test suggests that there is at least 1 factor. The cumulative

product of eigenvalues is also very informative and indicates a small number of factors.13 Finally,

the trace ratio shows that 2 factors explain almost 80% of the variability in data. Table 2 presents

results from the statistical tests for the number of factors. The MAP tests suggest 4 factors,

while the Parallel tests estimate 3 and 4 latent components.14 The Bai-Ng tests suggest 1 to 5

dynamic factors. The next step is to see if the linear approximation of the factor representation of

time-varying parameters is reliable. For the sake of space, the results are presented in the online

appendix. Overall, the linear hypothesis seems plausible, but adding a polynomial structure would

12Different rolling windows’ sizes have been fitted, and the results do not vary a lot. Here, I present only results
from rolling window approach since it appears to be the most robust.

13If the factor structure is true, than all the eigenvalues after the number of factors should be close to zero, and
hence, the cumulative product should go to zero. Because of the sampling uncertainty, taking products might be
more reliable than looking at eigenvalues only.

14The first specification of the MAP test works with squared correlation coefficients and the second with power 4.
The first two specifications correspond to PCA & Random data generation and PCA & Raw data permutation, while
the last two correspond to PAF/Common factor analysis with random data or raw data permutation. The latter and
the MAP test tend to overestimate the number of factors in structures with weaker correlation structure. The PCA
specifications of Parallel test consider also the variability of the scores. The last two parallel test specifications use
adjusted correlation matrices which tend to indicate more factors than warranted (see Buja and Eyuboglu (1992)).
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capture some nonlinearities in few parameters. Finally, looking at marginal contribution of common

factors on each TVP, I found that the coefficients of the interest rate equation are mostly explained

by the first factor. The same factor is important for some parameters in two other VAR equations,

together with the second and third common component. The complete results are in the online

appendix.

Overall, these results suggest that there are very few common sources of parameter instability.

However, given the sampling uncertainty involved in the recursive procedure, it is recommended

to estimate the time-varying parameters by an adaptive TVP model and then apply the factor

analysis to get a more accurate estimation of the number of factors.

Two-step likelihood method In this section, the TVP-VAR model in (23) is estimated using

Bayesian methods as in Primiceri (2005), and all TVPs are collected in θt. Then, I apply the same

factor analysis as in the previous section. I start discussing results for VAR coefficients only. The

stochastic volatilities and covariances are found to be driven by additional orthogonal factors.

The factorability is much stronger than in the case of recursive OLS. Figure 2 shows scree and

trace tests. It is obvious that only one factor is sufficient to well approximate all TVPs. Bai and Ng

tests also suggest 1 factors, while Parallel test points to 2 components. The linear approximation

seems to be plausible, see the corresponding figures in the online appendix. Hence, these tests

suggest a linear factor model on θ̂t with 1 factor.

TVP-VAR with stochastic volatility I applied the two-step methods to the TVP-VAR with

stochastic volatility as in Primiceri (2005). Compared to the previous case where the volatility

was supposedly constant, the tests suggest generally the same number of factors. Figure 3 presents

the marginal contribution of factors to the total R2 of TVPs and stochastic volatility parameters.

Elements 22 to 24 correspond to coefficients in the contemporaneous relations matrix A−10 , and the

last three elements are the variances of structural shocks. An interesting result is that the VAR

coefficients are explained by the first factor, the elements of A−10 are related to the second factor,

while the structural shocks volatilities are related to the third factor.

Hence, the roots of instability in VAR coefficients, that govern the transmission mechanism

of shocks, are different from those responsible for movements in covariances (contemporaneous

relations in a recursive SVAR) and in variance of shocks. These finding could be of interest for

a counterfactual exercise to study the Great Moderation and test the Good Policy (changes in

transmission mechanism) versus Good Luck (changes in shocks’ variances) hypothesis. The sources

of both explanations are small in number and uncorrelated which has significant implications for a

counterfactual setup: one can test the explanatory power of each in explaining the fall in variances
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of real activity measures. This goes beyond the scope of the actual paper but is a part of ongoing

research agenda in Amir-Ahmadi and Stevanovic (2015).

Overall, this exercise shows strong empirical evidence for low-dimension sources of parameters

instability in standard monetary VAR model. In particular, it suggests that the VAR coefficients

variability is due mostly to one underlying factors. Hence, assuming uncorrelated random walk

as dynamic process for VAR drifting coefficients seems not be the most adequate representation

in this case. Imposing the factor structure per se is not the only possibility: one could assume

reduced rank variation in the vector of TVPs and/or the volatilities. This would reduce sampling

uncertainty but does not allow detecting the underlying factors.

5.1.2 Results from the Factor-TVP VAR

The next step is to take into account this information explicitly and estimate the Factor-TVP

model in one step. The results above show that stochastic volatility is driven by factors other

than the sources of time variation within VAR coefficients. The simultaneous maximum likelihood

estimation of the Factor-TVP VAR model without stochastic volatility is performed in this section.

The Kalman filter is used to calculate the likelihood. The estimated θt are plotted in Figure 4. The

Table 3 summarizes the results of interest. According to likelihood ratios between 1-, 2- and 3-factor

models, not reported here, the 1-factor specification seems to be preferred. Also, the estimation

with more than one factor is very unstable and the algorithm tends to find different local maxima.

The underlying factor is very persistent, ρ̂ close to unity, which is in line with the strong collinearity

in θt found after the first stage estimation in the two-step likelihood procedure.

The common TVP factor is highly correlated with the unemployment rate, and moderately

related to inflation and interest rates. The top panel of Figure 5 plots the VAR series and the

estimated factor. To get a more reliable picture, the series are standardized because the factor is

much less volatile than the observable series. Finally, the bottom panel of the Figure 5 shows the

factor loadings. Note that the errors-in-variable identification is imposed such that the first (q× q)
part of λ is identity matrix. Several coefficients across all three VAR equations load on the common

factor.

The stability of the TVP-VAR has always been an issue within this literature [see discussion

by Sims and Zha (2006) versus Cogley and Sargent (2005)]. Some suggest to impose the stability

condition to hold for each and every time period, while others advocate to let it free and check ex-

post if the condition is satisfied in general. Imposing it can be restrictive: (i) from computational

point of view, this means discarding potentially a large number of posterior draws in Bayesian

setup; (ii) from economic point of view, there might be periods where the economic states are

such that the VAR representation of variables is on an explosive path, and discarding them is very
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arbitrary. But, these periods of explosiveness must be few. In my setup it is possible to impose the

stability restrictions either as nonlinear constraints on loadings and factors or simply by discarding

the unstable solutions. However, this is numerically extremely difficult to do within maximum

likelihood estimation, hence I do not impose it. Instead, I calculate the maximum eigenvalue of the

companion matrix of VAR coefficients for every period and report them in Figure 6. The stability

condition is violated if the largest eigenvalue is greater than 1. This happens only during early

1980s that roughly corresponds to the period when the Fed has under Volcker chairmanship. Hence,

I conclude that the stability of the implied VAR representation is not an issue in this application.

Evidence using post-crisis data In the previous exercise I used the data up to end of 2006.

Recall that the objective of this paper is to establish the empirical evidence on common sources

of parameters’ instability, following the idea that a small number of structural breaks occur. The

recent financial crisis is an example of such a structural change in economic behavior, and consid-

ering the most recent data may help in identifying the common shocks. In this section, I repeat

the same exercise but with data set updated to 2013Q4 with series from the Federal Reserve of

St-Louis FRED data base.

After applying the two-step recursive procedure, the selection procedures suggest more compo-

nents than with the previous data set: MAP test suggest 2, Parallel 5, while different Bai and Ng

(2007) criteria estimate 1, 3, 4, 5 and 6 common shocks. The scree test also suggest an additional

factor (not reported here, see figure in the online appendix). Moreover, the marginal contribution

of factors to the total R2 has changed. With the pre-crisis data, the first factor was mostly related

to interest rate equation, while using (post-)crisis data produces a picture where the first factor

is also important for the unemployment rate equation, and the second factor is mostly related to

inflation and unemployment rate equations (graphs are presented in online appendix).

Finally, the simultaneous maximum likelihood estimation of the model containing 2 factors is

performed. The summary of estimation results is in the last column of Table 3. Both factors

are very persistent with autoregressive coefficients close to unity. The first factor is now highly

correlated with the short interest rate, and positively correlated with inflation and unemployment.

The second factor is very negatively correlated with unemployment and positively with interest

rate, while the correlation coefficient with inflation is only 0.22. Also, the two TVP factors present

a correlation coefficient of 0.31.15 The time-varying VAR coefficients are plotted in Figure 7. For

many parameters there is an important change after 2007, indicating the presence of a structural

break. The top panel of Figure 8 plots the VAR series and the two factors, while the bottom part

presents the factor loadings. Now, contrary to pre-crisis data, a greater number of TVPs load on

15Recall that the factor model is in errors-in-variable representation, hence the factors dynamics is left unconstrained
and they can be correlated.
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factors. In particular, all but one inflation equation coefficients seem to be time-varying with the

two factors.

5.1.3 Further analysis

TVP factors and hundreds of macroeconomic time series In order to go further in in-

terpretation and significance of the empirical findings in this paper, I face the TVP factors to a

large data set containing 141 quarterly macroeconomic and financial series. The full description

is available in online appendix. To start, the first panel in Figure 9 shows correlation coefficients,

in absolute value, between all series and the TVP factor estimated from the VAR model spanning

1959-2006 period. The most correlated series is, as noted in Table 3, the unemployment rate. The

following four most related series are 5 and 10-year Treasury rates, as well as the BAA and AAA

corporate bonds, with coefficients close to 0.6. The middle and bottom panels plot correlation

coefficients between each of two TVP factors estimated on data ending on 2013Q4. The first factor

is now highly correlated, around 0.8, with the yield curve and corporate bonds, as well as with

some inflation series. The interpretation of the second factor is different. The highest correlation

coefficient, 0.73, is with the utilization capacity in manufacturing, followed by employment indi-

cators (growth rate of employees in: total nonfarm, service-providing, transportation and utilities,

and wholesale sectors). Hence, the two sources of variability in the VAR parameters seem to come

from the financial markets and from the real sector of economic activity.

TVP factors versus data factors Recently, a number of researchers pointed out that small

scale VARs can easily suffer from the lack of information and missing variables problems [see

Bernanke, Boivin and Eliasz (2005) and Forni, Giannone, Lippi, and Reichlin (2009)]. A proposed

solution is to augment the VAR with factors estimated from a large number of time series. Let Xt

be the macroeconomic panel of 141 series. Suppose it has the following factor structure

Xt = ΛFt + ηt

where Ft consists of K latent factors. These data factors are seen as proxy of macroeconomic

fundamentals. Hence, the objective here is to verify the relation between the estimated TVP

factors and the data factors. Bai and Ng (2002) ICp2 criterion suggests 10 components in Ft.

The interpretation of each of them, in terms of R2 between factors and individual time series, is

presented in online appendix. Factors estimated from 1959-2006 data set are such that the first is

related to real sector, second to inflation and third to financial markets and unemployment rate.

In 1959-2013 data set, F̂1t is clearly a real activity factor while F̂2t is linked to interest rates and

inflation series. The interpretation of subsequent factors is less clear.
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I start by looking at simple correlations between TVP factors estimated for both data set

lengths, (f̂2006t and f̂2013t ) and data factors (F̂ 2006
t and F̂ 2013

t ). The TVP factor f̂2006t is related to

the second data factor. Using TVP factors estimated for period 1959-2013 revealed that f̂20131t is

very correlated with F̂ 2013
2t , while f̂20132t is related to F̂ 2013

1t . To go beyond the simple correlations, I

tested if the data factors Granger-cause the TVP factors. In particular, the following multivariate

regression is performed:

f̂ it = α+ ρf̂ it−1 + βF̂ it−1 + ut (27)

where i ∈ (2006, 2013). I test whether β = 0. In both, 2006 and 2013 samples, the null is largely

rejected suggesting that data factors have significant forecasting power for TVP factors. However,

quantitatively, the evidence for f̂20132t is weak since F̂t−1 adds a tiny fraction to the adjusted R2 of

regression (27). So overall, this evidence suggest again the TVP factors are linked to output and

financial fundamentals of economic activity.

Predictive power of TVP factors Above, I found that TVP factors present some important

comovements with output and financial series, as well as with the corresponding common factors.

Now, I check the predictive content of the TVP factors for each of 141 macroeconomic time series

using Stock and Watson (2002b) diffusion indexes model:

zt+h = αh + ρhzt + γhF̂
i
t + βhf̂

i
t + ut+h (28)

where zt is one of the macroeconomic series in Xt, F
i
t are the principal components of Xt and f it

are the TVP factors, with i ∈ (2006, 2013). The forecasting horizon, h, varies from 1 to 8 quarters.

The idea is to verify if, in sample, the f it have predictive power above the data factors F it .
16 For

the sake of space, I present results for the sample ending in 2013Q4 and horizons 1, 4, 6, and 8

quarters. All other results are available in online appendix. The Figure 10 plots the p-values for

the null hypothesis βh = 0 from the regression (27). It is interesting to see that TVP factors have

some predicting power despite the presence of 10 common data factors. Moreover, this forecasting

performance rise with the horizon, which can be explained by the fact that data factors F̂t usually

improve upon the AR model in short term, but bear less relevant information at longer horizons.

In contrast, the TVP factors are very persistent, hence these low frequency movements seem to

bring forecasting power at long horizons. For example, when h = 8, f̂t seem to be relevant to

16If the objective was to developp a forecasting model I would do a pseudo out-of-sample analysis as well as a horse
rase of several models. But, this would imply re-estimating TVP factors during all out-of-sample periods, which
is computationally very difficult. Instead, the idea is simply to verify if the TVP factors have some informational
content beyond the past values of the series of interest and data factors. I do it within predictive regression to avoid
endogeneity issues. In addition, the regressors of interest in (28) are generated. Some theory has been developed for
testing in factor augmented regressions but whit data factors. There is no such results for factors estimated from
time-varying parameters. Hence, I present standard p-values as suggestive evidence only.
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predict several output series (e.g. industrial production and GDP), investment indicators, many

employment series and interest rates. The findings are similar in case of data set 1959-2006. To

summarize, the TVP factors are not only correlated with output and financial markets, but they

have some explanatory power, even in presence of data factors, for many important macroeconomic

series of interest.

5.2 FAVAR model

Since Bernanke, Boivin, and Eliasz (2005), there is a growing number of literature using the large

dimensional factor model to measure the effects of structural shocks in economy. This class of

models is of a particular interest here because the number of parameters is very large. Stock and

Watson (2007) perform a forecasting exercise using a large dimensional dynamic factor model with

time-varying factor loadings, time-varying autoregressive processes for idiosyncratic components

and TVP-VAR for latent factors. The results suggest instability in all these parameters. However,

given the huge number of TVPs in this empirical application, it is plausible that the underlying

variability of these coefficients is of a lower rank. I use the data from Boivin, Giannoni, and

Stevanovic (2013), and estimate their factor model by recursive procedure. The model is

Xt = ΛtFt + ut

Ft = Bt (L)Ft−1 + et

V ar(ut) = Ψt, V ar(et) = Ωt

where Xt is N × 1, Ft is K × 1, B(L) is of order p, Ψt is diagonal. The number of TVPs is

N ×K +N +K2 × p+ 0.5× (K × (K + 1)). In their application, N = 124, K = 4, p = 4, which

gives 694 TVPs. These are stacked in vector θt:

θt = [vec(Λt)
′ diag(Ψt)

′ vec(Bt(L))′ vec(tril(Ωt))
′],

where vec operator stacks columns of a matrix, diag vectorize the diagonal elements of a matrix,

and tril operator takes only the lower triangular part of a matrix, including its diagonal elements.

If one is interested in estimating this model by a likelihood method where the likelihood is ob-

tained with the Kalman filter, even if latent factors were known, there are still 694 states to track.

Moreover, it is not very intuititive to rationalize the existence of 694 distinct sources of instability.

On the other side, if the factor structure is imposed on θt

θt = ACt + ηt,

with Ct containing q << 694 elements, there are only q states to filter. Here, I estimate the
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TVP-FAVAR model by the recursive two-step procedure with expanding window: the factors are

extracted in step 1, then their VAR process is estimated in the second step. Then, I apply the

same factor analysis as in the case of TVP-VAR model to the estimated TVPs in θ̂t.

In the interest of space, I will just summarize the results without showing figures and tables.

The scree and trace tests suggest some weaker factor structure than in the VAR case. The MAP

and Parallel tests estimate 5 to 10 factors, and the Bai and Ng tests suggest 2 to 4 common shocks.

Hence, 4 factors seems to be satisfactory, but one must keep in mind that θ̂t contains 694 elements

to approximate. As in the VAR case, I find that few factors explain mostly the variations in factor

loadings and VAR coefficients, Λt and vec(Bt(L)), but less in stochastic volatilities.

When compared to data, the factors have strong predictive power (R2 between 0.7 and 0.8)

for Treasury bonds, especially at long-term maturities, corporate bond yields, some stock market

indicators, and the personal saving rate. They are also related, with R2 between 0.4 and 0.7, to

many labor market indicators (employment, unemployment rate, hours, earnings) and some price

indicators.

6 Conclusion

The objective of this paper was to detect the presence of the factor structure and test its dimen-

sionality in popular empirical time-varying parameters macroeconomic models. I first showed that

structural instability in macroeconomic models is likely to imply time variation in all (or at least

a subset of) parameters in reduced-form or estimable models. I discussed how the factor repre-

sentation of time-varying parameters is obtained, and presented the Factor-TVP that takes into

account the factor structure of the parameters. The approach was applied to a standard 3-variable

VAR model from Primiceri (2005), and to a factor-augmented VAR (FAVAR) model from Boivin,

Giannoni, and Stevanovic (2013).

Overall, I found that parameters’ instability in these macroeconomic models is caused by a very

few number of common factors. In TVP-VAR application, the underlying factor is very persistent

and highly correlated with the unemployment rate, and moderately related to inflation and interest

rates. When applied to TVP-VAR model with stochastic volatility, I found that time-variability

in VAR coefficients is mostly explained by only one factor, while the stochastic volatility part

is explained by two additional factors. In particular, when the structural model is obtained by

the Choleski decomposition of the residuals time-varying covariance matrix, the contemporaneous

relations matrix parameters were mainly explained by the second factor, while the variances of

structural shocks were related to the third factor.

To incorporate the recent financial crisis and to see if there have been common structural breaks,
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the same exercise was conducted with the sample updated to 2013Q4. For two-step procedures, the

data suggested one more factor, and their interpretation changed. The estimated TVPs presented

an important change after 2007, indicating the presence of a structural break. Contrary to pre-crisis

data, a majority of TVPs were high correlated with the factors. In particular, all inflation equation

coefficients were time-varying with the two factors, and this was also the case for about half of the

parameters in other VAR equations.

Comparing TVP factors to a panel of 141 macroeconomic time series and their estimated data

factors revealed that (i) the roots of variability in the VAR parameters are likely to come from

financial and real sectors of economic activity, (ii) data factors that represent macroeconomic

fundamentals Granger-cause the TVP factors, (iii) the TVP factors have significant predictive

power, beyond the information contained in data factors, for a great number of output, investment

and employment series as well as for term structure of interest rates, (iv) this predictive content

increases with the forecasting horizon.

To complete the empirical exercise, the time-varying FAVAR model was estimated by two-step

recursive procedure, and 4 dynamic factors were found to drive the dynamics in nearly700 time-

varying parameters. Again, the stochastic volatility coefficients instability had different common

factors than the regression coefficients.

Further research is needed to understand the origin and implications of these commonalities.

An ongoing research project in Amir-Ahmadi and Stevanovic (2015) studies these issues in a si-

multaneous Bayesian Factor-TVP framework with stochastic volatility.
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Table 1: Simulation results

Model 1: T = 300, N = 1, K = 6, q = 1, σβ = 0.4
Factors dynamics: ρ = 0.95, Q = 0.1

Two-step rolling OLS Two-step MLE Simultaneous MLE

Testing number of factors Testing number of factors

MAP 1 1 MAP 1 1
Parallel 1 1 1 Parallel 1 1 1
Bai-Ng 1 1 1 Bai-Ng 1 2 2

1 1 1 1 2 2

Approximation of factors dynamics Approximation of factors dynamics Approximation of factors dynamics

ρ 0.9986 ρ 0.9852 ρ 0.9568
Q 0.0038 Q 0.0356 Q 0.0925
R2 0.5599 R2 0.7265 R2 0.7825

RMSE: TVPs 0.8625 RMSE: TVPs 0.7494 RMSE: TVPs 0.7088
RMSE: loadings 0.3177 RMSE: loadings 0.2282 RMSE: loadings 0.1736

Log-likeliood -604.59 Log-likeliood -583.57

Model 2: T = 600, N = 4, K = 4, q = 3, σβ = 0.4
Factors dynamics: ρ = diag(0.95 0.9 0.85), Q = diag(0.4)

Two-step rolling OLS Two-step MLE Simultaneous MLE

Testing number of factors Testing number of factors

MAP 7 7 MAP 3 3
Parallel 3 3 7 Parallel 3 3 6
Bai-Ng 1 2 3 Bai-Ng 1 3 3

1 2 3 2 3 3

Approximation of factors dynamics Approximation of factors dynamics Approximation of factors dynamics

ρ 1.0020 0.9981 0.9953 ρ 0.9728 0.9474 0.9309 ρ 0.9487 0.8728 0.8384
Q 0.0027 0.0050 0.0079 Q 0.0615 0.1208 0.1640 Q 0.3745 0.3908 0.4177
average R2 0.2633 average R2 0.6832 average R2 0.8119

RMSE: TVPs 1.6415 RMSE: TVPs 1.1282 RMSE: TVPs 0.8202
RMSE: loadings 0.6149 RMSE: loadings 0.3736 RMSE: loadings 0.0724

Log-likeliood -5778.1 Log-likeliood -5094.1

Model 3: T = 300, N = 3, p = 1, q = 1, σβ = 0.4
Factors dynamics: ρ = diag(0.95), Q = diag(0.1)

Two-step rolling OLS Two-step MLE Simultaneous MLE

Testing number of factors Testing number of factors

MAP 2 2 MAP 1 1
Parallel 2 2 3 Parallel 3 3 4
Bai-Ng 1 1 2 Bai-Ng 1 1 1

1 2 2 1 1 1

Approximation of factors dynamics Approximation of factors dynamics Approximation of factors dynamics

ρ 0.9967 ρ 0.9805 ρ 0.9623
Q 0.0034 0.0201 Q 0.0424 Q 0.0881
R2 0.3550 R2 0.8385 R2 0.8732

RMSE: TVPs 0.9039 RMSE: TVPs 0.7809 RMSE: TVPs 0.7172
RMSE: loadings 0.7531 RMSE: loadings 0.1757 RMSE: loadings 0.0710

Log-likeliood -1411.4 Log-likeliood -1387.5
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Table 2: Selecting the number of factors in VAR time-varying coefficients

Test 2-step OLS 2-step MLE

MAP 1 1 8 9

Parallel 3 3 4 4 2 2 4 4

Bai-Ng 1 3 5 1 1 1
2 4 5 1 1 1

This Table presents the estimation of the number of factors using MAP, Parallel and Bai and Ng (2007) procedures.

The procedure are applied to TVPs estimated by recursive least squares (2-step OLS) and to TVPs initially estimated

as in Primiceri (2005) (2-step MLE).

Table 3: Summary of ML estimation of Factor-TVP VAR model

Data up to 2006 Data up to 2013

Log-likelihood -233.52 -385.09

ρ̂ 0.9996 diag[0.9995 0.9800]

corr(y, f) π 0.2430 π 0.4703 0.2248
ur 0.8419 ur 0.4555 -0.5805
r 0.3914 r 0.7110 0.5250

This Table presents some results from the Factor-TVP VAR model estimated in one-step my ML and without stochastic

volatility. Column “Data up to 2006” corresponds to estimation on the data set ending in 2006, while “Data up

to 2013” refers to data set ending on 2013Q4. In the latter case, there are two common TVp factors. ρ is the

autoregressive coefficient in factor’s dynamic process (and diagonal 2 × 2 matrix in the second column). corr(y, f)

contains correlation coefficients between the VAR series and the estimated common TVP factor(s): π stands for

inflation rate, ur for unemployment rate and r for the short interest rate.

28



Figure 1: Scree and trace tests for VAR model TVPs estimated by recursive OLS
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This Figure presents sorted eigenvalues of the correlation matrix of TVPs (scree test), their cumulated product and

ratio, as well as the proportion of TVP variances explained by consecutive factors (trace test). TVPs have been

estimated by rolling least squares and contain only VAR drifting coefficients.

Figure 2: Scree and trace tests for VAR model TVPs estimated by two-step likelihood method
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This Figure presents sorted eigenvalues of the correlation matrix of TVPs (scree test), , their cumulated product and

ratio, as well as the proportion of TVP variances explained by consecutive factors (trace test). TVPs have been first

estimated by Bayesian procedure following Primiceri (2005) and contain only VAR drifting coefficients.
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Figure 3: Marginal contribution to total R2 of TVPs and SVs of VAR estimated by two-step
likelihood method
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This Figure decompose the contribution of first 5 MLE factors to the variance of each TVP, Covariance state and

Stochastic Volatiity estimated as in Primiceri (2005). The elements 1-7 represent coefficients from inflation equation,

[b0,1, b1,11, b1,12, . . . b2,13], 8-14 those from unemployment rate equation and 15-21 for interest rate. Elements 22-24

are the covariance states and 25-27 are the stochastic volatilities for inflation, unemployment rate and short interest

rate equation respectively.
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Figure 4: Time-varying parameters from one-step estimation of Factor-TVP VAR
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This Figure shows the VAR drifting coefficients calculated as the common component after all the Factor-TVP equa-

tions have been estimated simultaneously by maximum likelihood and on the same data as in Primiceri (2005). The

top panel shows coefficients from inflation equation, [b0,1, b1,11, b1,12, . . . b2,13]; the middle panel those from unem-

ployment rate equation, [b0,2, b1,21, b1,22, . . . b2,23]; and the bottom for interest rate, [b0,3, b1,31, b1,32, . . . b2,33].
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Figure 5: TVP factor and the loadings from one-step estimation of Factor-TVP VAR
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This Figure shows the estimated TVP factor (top panel, together with VAR series) and the corresponding loadings

(bottom panel) from the Factor-TVP model estimated simultaneously by maximum likelihood on the same data as in

Primiceri (2005). The elements 1-7 represent coefficients from inflation equation, [b0,1, b1,11, b1,12, . . . b2,13], 8-14

those from unemployment rate equation and 15-21 for interest rate. Elements 22-24 are the covariance states and

25-27 are the stochastic volatilities for inflation, unemployment rate and short interest rate equation respectively.
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Figure 6: Stability of Factor-TVP VAR over time
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This Figure shows the largest eigenvalue of the companion matrix of the VAR coefficients, at each point of time. The

TVPs are calculated as the common component after all the Factor-TVP equations have been estimated simultaneously

by maximum likelihood. The stability condition is violated if larger than 1.
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Figure 7: Time-varying parameters from one-step estimation of Factor-TVP VAR with post-crisis
data
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This Figure shows the VAR drifting coefficients calculated as the common component after all the Factor-TVP equa-

tions have been estimated simultaneously by maximum likelihood and on the data set updated to 2013Q4. The top panel

shows coefficients from inflation equation, [b0,1, b1,11, b1,12, . . . b2,13]; the middle panel those from unemployment rate

equation, [b0,2, b1,21, b1,22, . . . b2,23]; and the bottom for interest rate, [b0,3, b1,31, b1,32, . . . b2,33].
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Figure 8: TVP factor and the loadings from one-step estimation of Factor-TVP VAR with post-
crisis data
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This Figure shows the estimated TVP factor (top panel, together with VAR series) and the corresponding loadings

(bottom panel) from the Factor-TVP model estimated simultaneously by maximum likelihood on the updated data set

to 2013Q4. The elements 1-7 represent coefficients from inflation equation, [b0,1, b1,11, b1,12, . . . b2,13], 8-14 those

from unemployment rate equation and 15-21 for interest rate. Elements 22-24 are the covariance states and 25-27

are the stochastic volatilities for inflation, unemployment rate and short interest rate equation respectively.

35



Figure 9: Correlation coefficients between TVP factors and a large number of macro series
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This Figure shows contemporaneous correlation coefficients between estimated TVP factors and 141 macroeconomic

series grouped according to acronyms below x-axes. The meaning of each acronym is the following. OUT: Real output

and income, CONS: Real consumption; INVST: Real investment, EMP: Employment and hours; INV: Inventories;

MON: Money and credit quantity aggregates; PRI: Price indexes; AHE: Average hourly earnings and salaries; GOV:

Government spending and revenues. The full description of the large data set is available in the online appendix.
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Figure 10: Predictive power of TVP factors from data set 1959-2013
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This Figure shows the predictive power of two TVP factors for each of 141 series grouped by category. It plots the

p-values for null hypothesis βh = 0 from the predictive regression (27). The black horizontal line fix the level of 5%.

The meaning of each acronym is the following. OUT: Real output and income, CONS: Real consumption; INVST:

Real investment, EMP: Employment and hours; INV: Inventories; MON: Money and credit quantity aggregates; PRI:

Price indexes; AHE: Average hourly earnings and salaries; GOV: Government spending and revenues.
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